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Assist. Prof. Arzucan Özgür . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)
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ABSTRACT

ANALYSING DRUG TARGETS USING LIGAND

SIMILARITY

Analysis of the interactions between target proteins and drugs is crucial not only

for drug discovery, but also for a better understanding of the possible evolutionary pres-

sure that the drugs exert on the proteins. Based on the hypothesis that similar proteins

bind to similar ligands, ligand similarity is utilized with two different approaches. We

first introduce ligand-centric network models to analyse the relationships of protein

family members via the drugs that they bind to. We build three different types of net-

works in which the proteins are represented as nodes, and two proteins are connected

by an edge with a weight that depends on the number of shared identical or similar

ligands. As a test case, we focus on β-lactamases and Penicillin-Binding Proteins. The

use of ligand sharing information to cluster proteins results in modules comprising pro-

teins both with sequence and functional similarity. Consideration of ligand similarity

not only enhances the clustering of the target proteins, but also highlights some in-

teractions that were not detected in the identical ligand network. In the second part,

we follow a machine learning approach for predicting protein-ligand interactions using

Support Vector Machines (SVM) where we focus on comparing different ligand simi-

larity kernels. For this task, a larger data set of GPCR and ion channels is examined.

Among the 16 different ligand kernels we experiment with, LINGO based TF-IDF co-

sine similarity achieves a 0.009 better AUC score than the widely used 2D Fingerprint

Tanimoto model on the GPCR data set.
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ÖZET

İLAÇ HEDEFLERİNİN LİGAND BENZERLİĞİ YOLUYLA

ANALİZİ

Protein ve ilaçlar arasındaki ilişkinin analizi, yalnızca yeni ilaçların keşfi konusun-

da değil, proteinlerin ilaçlar üzerinde oluşturabileceği olası evrimsel baskının daha iyi

anlaşılması açısından da büyük önem taşımaktadır. Benzer proteinlerin benzer ligand-

lara bağlanması esasına dayalı olarak tasarladığımız bu çalışmada, ligand benzerliği iki

farklı yaklaşımla ele alınmıştır. İlk olarak, protein aileleri üyeleri arasındaki ilişkiyi

bağlandıkları ligandlar yolu ile inceleyen ligand-merkezli ağ modelleri tanıtılmıştır.

Proteinlerin ağın düğümleri olarak temsil edildiği üç farklı ağ modelinde, iki pro-

tein düğümü, ağırlığı proteinlerin ortak olarak bağlandıkları ligandların sayısına veya

bağlandıkları ligandların benzerliğine bağlı olarak değişen bir kenar ile bağlanır. Bu

kısımda β-laktamaz ve Penisilin-Bağlayan Protein aileleri üzerine yoğunlaşılmıştır. Lig-

and paylaşım bilgisinin kullanımıyla oluşturulan grupların hem amino-asit dizilimi hem

de fonksiyonel benzerlikleri olan proteinleri biraraya topladığı gözlenmiştir. Ligand

benzerlik bilgisinin kullanımı proteinlerin gruplanması işlemini iyileştirmekle kalmayıp

aynı zamanda ortak ligand ağlarının bulamadığı bazı etkileşimleri vurgulamıştır. İkinci

kısımda, protein-ligand ilişkisi tahminlemede makine öğrenmesi yaklaşımını izleyerek

Destek Vektör Makinelerinin kullanıldığı farklı ligand benzerlik çekirdek fonksiyon-

larının karşılaştırılmasına odaklanılmıştır. Bu modelde daha büyük bir veri kümesi

olarak GPCR ve iyon kanalları aileleri incelenmiştir. Test ettiğimiz 16 farklı ligand

çekirdek fonksiyonu arasında GPCR veri kümesinde, SMILES karakter dizisini kul-

lanan LINGO bazlı TF-IDF kosinüs benzerliği, 2D parmakizi Tanimoto modelinden

daha iyi bir performans üretmiştir.
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1. INTRODUCTION

Identification of potential interactions between target proteins and drugs carries

a big importance in drug discovery. Increase in the diversity of target proteins due to

selective pressure and evolutionary process results in the need to discover new active

compounds. However, the high cost of novel drug discovery has led to repurposing of

existing compounds. Efficient prediction of target-compound interactions using com-

putational methods accelerates research efforts in this area.

In this study, we first analyse existing protein-ligand interactions on network

models and then expand the existing interaction data set by protein-ligand interaction

prediction. While conducting these complementary tasks, we mainly focus on ligand

similarity to identify its impact on protein-ligand interactions.

The aim of our first task is to analyse the relationships among members of a

protein family. Unlike most previous studies that use sequence similarity to classify

proteins, our approach is based on creating ligand-centric networks of proteins. We

introduce three types of networks, where the nodes represent proteins, and the edges

correspond to the sharing of identical or chemically similar ligands. Among the drug

targets, β-lactamase and Penicillin Binding Protein (PBP) families lie at the heart of

the mechanism that enable bacteria to gain β-lactam resistance, which currently is one

of the major threats to public health. Identifying the relations among the proteins

in these families and their ligands is crucial for a better understanding of bacterial

evolution that results in antibiotic resistance. Therefore, as our case study we apply

our methods to this dataset. We first provide an exhaustive study of the β-lactamase

and PBP families and their ligands annotated in Protein Data Bank (PDB). The

use of ligand sharing information to cluster proteins resulted in modules comprising

proteins with not only sequence similarity but also functional similarity, even though

no structural information was provided for proteins. Consideration of ligand similarity

not only enhanced the clustering of the target proteins, but also highlighted some

interactions that were insignificant in the identical ligand network. Analysing the β-
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lactamases and PBPs using ligand-centric network models enabled the identification of

novel clusters, which can be used to guide drug design efforts.

Our second task seeks to answer two main questions: (i) how much does lig-

and similarity affect protein-ligand interaction prediction, and (ii) whether a simplified

molecular input line entry specification (SMILES) representation based similarity ker-

nel can perform better than the widely used 2D fingerprint model with the Support

Vector Machines (SVM) machine learning algorithm. We utilize a target-ligand model

in which the corresponding compound space is screened against a family of proteins,

namely GPCR and ion channels [3]. Proteins and ligands are represented in kernel space

and SVM classification is used. In a previous study, using 2D fingerprint Tanimoto

similarity as the ligand kernel, different target similarity kernels; mismatch, local align-

ment, dirac, musltitask and hierarchy, were tested and hierarchy kernel which considers

the systematic classification of proteins, was found to produce the best performance

among the others. In this work, we select the hierarchy kernel as our protein similar-

ity kernel and focus on 16 different ligand kernels. We utilize string kernels including

edit distance [4], normalized longest common subsequence (NLCS) [2], and a model

that combines different longest common subsequence (LCS) [2] algorithms as well as

the SMILES specialized algorithms such as, a method based on representing SMILES

strings as a set of overlapping substrings with predefined length, namely LINGO [5],

SMILES fingerprint (SMIfp) [6], and SMILES based substring kernel [7]. We propose

some modifications to these SMILES based algorithms in which for LINGO model we

use different parameter settings (substring length q = 3, 4, 5), and propose a weighted

model. For SMIfp we modify the definition of scalar fingerprint generation and hold

tests using different similarity metrics (Euclid, CBD, Tanimoto). SMILES based sub-

string kernel is experimented with modified representation of SMILES strings. Finally,

we propose LINGO-based term frequency -inverted document frequency (TF-IDF) co-

sine similarity ligand kernel. On the GPCR data set, the LINGO-based TF-IDF cosine

similarity method that we propose performed better than the 2D fingerprint Tanimoto

similarity model in terms of ROC-AUC (Receiver Operating Characteristic - Area Un-

der the Curve). For ion channels data, the ligand kernels we tested failed to achieve

higher scores than the original ligand kernel, with the NLCS algorithm with a close



3

performance.

The following sections of this study include detailed information about the bi-

ological and theoretical background of the research, the adopted protocol with com-

putational methods, analysis of the results and conclusion. Background information

about β-lactamase and PBP families, ligand and target similarity kernels, use of ligand

similarity concept in protein clustering and protein-ligand interaction prediction tasks

are given in Chapter 2. Chapter 3 includes information about the collected data, the

computational approaches that were used throughout the study, and the design of the

experiments. In Chapter 4 the results of the study are reported and discussed. Chapter

5 covers a small summary of the research including the fundamental aim, methodology

and the important findings and conclusion. Possible strategies to follow for future work

are also included. Supplementary information is presented in the Appendix.
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2. THEORY

2.1. β-lactam Antibiotics and Resistance Mechanism

2.1.1. β-lactam Antibiotics

β-lactam antibiotics, which constitute 60% of the worldwide antibiotic usage, are

the most effective and commonly used agents in the treatment of infectious diseases [1].

The door for the the discovery of the very first antibiotic, penicillin, was opened in 1921

by Alexander Fleming’s discovery of a protein, which he called lysozyme, which was

found to be the reason of lysis and decomposition of cell-wall in Gram-positive bacteria

[8]. Later in 1928, Fleming’s experiments on Staphylococcus resulted in observation of

lysis, which he did previously observe with lysozyme protein, and led to discovery of

penicillin [8]. However, it was not until 1940s when the penicillin was introduced as a

clinical agent.

Today β-lactam antibiotics comprise several subclasses such as penicillins, cephalo-

sporins, carbapenems, and monobactams. The drugs classified under β-lactam antibi-

otics are defined by a four-membered β-lactam ring. The structures of penicillins,

cephalosporins, carbapenems and monobactams are shown in Figure 2.1 in which β-

lactam rings are indicated in orange. They function by inhibiting the cell wall synthesis

in bacteria by penicillin-binding proteins (PBPs), which reside in the cell wall and are

responsible for maintaining cell wall [9].

Resistance to β-lactam antibiotics was observed even before the introduction of

the penicillin to medical use [10,11]. Evolution of resistance in bacteria is an inevitable

response that enhances the overall fitness of the organism [12, 13]. As a result of the

evolutionary process and selective pressure, emergence of antibiotic resistant bacteria is

a natural outcome. There are four known ways of resistance to β-lactam antibiotics: (i)

production of β-lactamase enzymes that hydrolyse the β-lactam ring of the antibiotic,

(ii) penicillin binding proteins that maintain the peptidoglycan structure in bacterial
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Figure 2.1. Structure of some β-lactam antibiotics. (a) Monobactams. (b)

Carbapenems (c) Penicillins (d) Cephalosporins.
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cell wall, (iii) alteration of porin channels, and (iv) initiation of efflux exporter proteins

[14,15].

2.1.2. β-lactamases

Bacterial β-lactamases are members of an enzyme family (EC 3.5.2.6) that de-

activate the effect of the β-lactam antibiotics by attacking their β-lactam rings. In

order to dissolve the β-lactam ring, most of the β-lactamases use serine ester hydroly-

sis mechanism, while a few use zinc ion mechanism [1]. Figure 2.2 illustrates the action

of serine ester mechanism.

The first β-lactamase was observed in Staphylococcus aureus strains in the 1940s

before the use of penicllin as an antimicrobial agent [16]. After its introduction in

1944, benzylpenicillin’s activity against Staphylococcus aureus was reported to be de-

creased dramatically within five years as a result of genetic transfer and selection

bacteria [16]. The newly introduced β-lactams against Gram-negative bacteria also

followed the similar fate as a result of quickly developed resistance mechanism [1]. In

1980s, Extended-Spectrum β-lactam antibiotics, such as ceftazidime and cefotaxime,

and β-lactam inhibitors, such as sulbactam and clavulanic acid, were introduced as a

response to widespread β-lactamase producing pathogens [17]. However, the emergence

of the Extended-Spectrum Beta-Lactamases (ESBLs) with resistance to cephalosporins

quickly followed [18, 19]. As a result of the dramatic increase in the diversity of the

β-lactamases and the emergence of ESBLs; many different classification schemes were

published to organize the β-lactamase family.

The first broadly accepted classification of β-lactamases was proposed by Rich-

mond and Sykes in late 1960s, in which they decided according to the enzymes’s hydrol-

ysis rate of penicllin and inhibition rate by cloxacillin and/or p-chloromercuribenzoate

[1]. However, this scheme required major revisions, therefore it was replaced by Bush

in 1989 [20]. Today, there are two globally accepted classification schemes for β-

lactamases, where the first one is based on amino-acid sequence classification and the

second one is based on functionality. β-lactamases were divided into four classes (Class



7

Figure 2.2. Hydrolysis of a β-lactam ring by β-lactamase using serine ester

mechanism. -OH group of the active site serine is also shown [1].
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A–D) based on their sequence similarity by Ambler in 1980 [21]. Classes A, C and D

function by the serine ester hydrolysis mechanism, whereas class B β-lactamases, also

known as Metallo β-lactamases, use zinc ion to destroy the β-lactam ring. The classi-

fication scheme by functionality resulted in three major groups: Group 1 cephalospho-

rinases (Class C), Group 2 serine β-lactamases (Class A and Class D), and Group 3

Metallo β-lactamases (Class B), each of which is also divided into several different sub-

groups [22, 23]. The functionality based classes of the β-lactamases were determined

according to their hydrolysis rates by some pre-defined drugs such as EDTA, and

bezylpenicillin. Some widely known β-lactamases and their functional and sequence-

based classes are given in Table 2.1.

Table 2.1. Classification schemes for β-lactamases [23].

Bush-Jacoby
Group (2009)

Bush-Jacoby-Medeiros
Group (1995)

Molecular Class
(Ambler)

Representative
Enzymes

1 1 C
AmpC, P99, ACT-1,

CMY-2, FOX-1, MIR-1

1e – C GC1, CMY-37

2a 2a A PC1

2b 2b A TEM-1, TEM-2, SHV-1

2be 2be A
TEM-3, SHV-2, CTX-M-15,

PER-1, VEB-1

2br 2br A TEM-30, SHV-10

2ber – A TEM-50

2c 2c A PSE-1, CARB-3

2ce – A RTG-4

2d 2d D OXA-1, OXA-10

2de – D OXA-11, OXA-15

2df – D OXA-23, OXA-48

2e 2e A CepA

2f 2f A KPC-2, IMI-1, SME-1

3a 3 B MP-1, VIM-1, CcrA, IND-1

3b 3 B CphA, Sfh-1

By the end of 2009, over 890 unique protein sequences of β-lactamases were

reported by Jacoby and Bush (http://www.lahey.org/Studies/) [23]. Today, a search

through UniProt with EC classification number 3.5.2.6 returns more than 4900 hits.
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2.1.3. Penicillin Binding Proteins

Peptidoglycan is responsible for forming the bacterial cell wall. Penicillin-binding

proteins (PBPs), take part in the polymerization of the glycan strands, which form the

main substance of the peptidoglycan, and link gylcan chains together [24]. PBPs,

which are found in all bacteria in varying amounts and are located in the bacterial

membrane, have the ability of covalently bind to penicillin [25,26].

PBPs are classified into two groups according to their molecular weights (MW)

as low MW PBPs and high MW PBPs, both of which are also divided into subgroups

namely A, B, and C based on sequence similarity [27]. High MW PBPs are also

referred to as multimodular PBPs, whereas the PBPs that are not able to synthesize

peptidoglycan are called monofunctional [28]. PBPs and β-lactamases tend to cluster

together instead of forming clusters of their own when sequential similarity is considered

[14]. PBPs are reported to be ancestors of the β-lactamases, and most of the members

of both of these families harbor active-site serine [14].

2.2. Targets and Target Similarity

Proteins are usually classified mostly according to their amino-acid sequences and

structures. Besides these popular ways of representation, motifs and pharmacological

properties are also used to represent and classify proteins.

A large volume of work has been published to design similarity kernels for pro-

teins, varying from the kernels using sequence representation to kernels based on 3D

structures [29–33]. REFS Sequence based similarity allows use of any type of string

similarity kernel such as edit distance. Among the sequence-based kernels, the most

widely used ones are global alignment (Needleman-Wunsh) and local alignment (Smith-

Waterman) [34, 35]. Global alignment finds the best alignment of given sequences by

comparing their complete length, whereas local alignment finds the best alignment of

string pieces of maximum possible length. The spectrum kernel, computes a similarity

value by counting the number of common k -mers in target sequences [29]. The Mis-
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match kernel is the extended version of the spectrum kernel which allows mismatches.

These kernels ignore position information, therefore kernels that consider position in-

formation such as weighted degree (WD) kernel [36], the WD kernel with shifts [37]

and oligo kernel [38] were also proposed.

2.2.1. Hierarchy Kernel

In this study as a target kernel we use a family hierarchy dependent kernel, which

considers the number of shared ancestors of two targets [3]. Considering hierarchy sys-

tem actually leads to use of functional similarity of the proteins since these hierarchies

are organized using protein-ligand interaction information. For instance, enzymes are

divided into hierarchies by EC (Enzyme Commission system) according to the reac-

tions they catalyze. EC is succeeded by at most 4 numbers all of which are separated

by a period. To give an example, EC 3.5 represents the hydrolases that are active on

carbon-nitrogen bonds and peptide bonds. It is a subclass of EC 3 (hydrolases) and it

is superior of 3.5.2 which represents cyclic amides in EC 3.5.

The GPCR family is divided into four classes: Class A (the rhodopsin family),

Class B (the sectretin family), Class C (the metabotropic family) and Class D (the rest

of the receptors) all of which are also divided into subgroups. Ion channels are also

divided into subclasses by KEGG according to different features which can be useful

for the hierarchy as means of similarity.

Equation 2.1 below describes the hierarchy kernel where θh(p) denotes to a feature

vector where each of the rows corresponds to a node in the hierarchy. A row is set to

1 if a node is placed under the hierarchy of p or 0 otherwise.

Khierarchy(p, p
′) = 〈θh(p), θh(p′)〉 (2.1)
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2.3. Ligands and Ligand Similarity

Ligand is a small molecule that binds to a protein by forming covalent or nonco-

valent bonds [39]. If the bond established between protein and ligand is covalent, then

it results in irreversible binding. However, reversible binding is more common.

Ligands are described using convenient properties, which are called descriptors.

These descriptors are mostly classified according to their dimensionality, 1D, 2D and

3D, all of which allow use of varying similarity metrics to calculate the distance between

two ligands [40]. Figure 2.3 illustrates the three different representations of a sample

ligand, tazobactam intermediate (TBE). In Figure 2.3a, 1D representation of the

ligand, which is a string named SMILES, is shown. Figure 2.3b is 2D model of TBE

which is a graph created by the atoms and bonds. Finally, Figure 2.3c illustrates the

3D form of TBE.

Figure 2.3. Three representations for Tazobactam Intermediate (TBE). (a) 1D

SMILES string. (b) 2D model as a graph of atoms and bonds. (c) 3D object.

2.3.1. 1D based similarity

1D descriptors, which are simple way of representing ligands, convey the infor-

mation of global properties such as molecular weight, atom and bond counts.
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The most popular use of 1D representation is the Simplified Molecular Input En-

try Specification (SMILES), which is a way of describing molecular structures in the

form of strings. SMILES was introduced by Arthur Weininger in 1988, then unique

SMILES format was developed the following year by Weininger et al. [41,42]. SMILES

strings convey information about molecular structures by representing atoms and bonds

with some specific symbols. The atoms are represented with their corresponding sym-

bols and bonds are represented with some special characters where ‘-’, ‘=’, ’#’ and ‘:’

denotes the single, double, triple and aromatic bonds respectively [43]. Parantheses in

SMILES string indicate branches, while lower case letters are used to indicate aromatic

rings. More detailed description of the SMILES string is given in the Daylight website

(www.daylight.com/dayhtml/doc/theory/theory.smiles.html).

Since SMILES format is based on string representation, different ordering of

strings can cause ambiguities even though arrangement of the string does not affect

the structure of the molecule. Therefore, to indicate the uniqueness of a SMILES

string, Canonical SMILES is used, which allows an algorithm generated string. There

are different canonicalization algorithms developed by Daylight Chemical Information

Systems, Chemistry Development Kit, ChemAxon [44–46].

Ligand similarity comparisons on 1D representation model can make use of any

string similarity algorithm. In this section we will provide some of the widely used

string similarity methods with the ones specialized to measure the similarity of SMILES

strings. Before introducing these methods, let us remind three of the most popular

distance and similarity metrics which will be referred to in these methods.

Euclidean Distance is a way of computing distance between points a and b defined

in Rn [47].

EuclidDistance(a, b) =

√√√√ n∑
i=1

|ai − bi|2 (2.2)
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City Block Distance (CBD) or Manhattan distance computes the distance be-

tween points a and b in a Rn space [48].

CBD(a, b) =
n∑

i=1

|ai − bi| (2.3)

Tanimoto coefficient (Tc) for two binary vectors, X and Y is given by,

Tanimoto(X, Y ) =
z

(x+ y − z)
(2.4)

where x represents the number of bits set to 1 in X, y represents the number of bits

set to 1 in Y , and z represents the number of bits set to 1 in both [49].

2.3.1.1. LINGO. LINGO refers to q-character substrings of a SMILES text [5]. A

SMILES string of length n can be represented with (n − (q − 1)) q-length substrings

(LINGOs). LINGO profiles are generated from Canonical SMILES which undergo two

main modifications before the LINGO creation process: First, all ring numbers in the

SMILES are set to ‘0’, and then ‘Cl’ and ‘Br’ atoms are replaced with ‘L’ and ‘R’

respectively.

For example, a SMILES string ‘ccc1c2NcCl’ becomes ‘ccc0c0NcL’ and the fol-

lowing LINGOs are generated for q = 4 with the corresponding frequencies: ‘ccc0’:1,

‘cc0c’:1, ‘c0c0’:1, ‘0c0N’:1, ‘c0Nc’:1, and ‘0NcL’:1. To calculate the similarity between

two compounds, LINGO profiles for each molecule are generated and then the Tani-

moto coefficient is used,

LINGOsim =

∑m
i=1 1− |NS1,i −NS2,i|

|NS1,i +NS2,i|
m

(2.5)

where m is the number of LINGOs created from the SMILES string of any of the

compounds while NS1,i represents the number of LINGOs of type i in compound S1
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and NS2,i represents the number of LINGOs of type i in compound S2 [5] .

2.3.1.2. SMILES Fingerprint (SMIfp) Kernel. SMILES Fingerprint (SMIfp) is intro-

duced by Schwartz et al. as a method to perform ligand-based virtual screening. SMIfp

is based on representing SMILES strings in a 34-dimensional space where each of the

dimensions correspond to the frequency of a different symbol in that string [6]. More

than 32 million compounds in PubChem are analyzed to identify the most-frequent

symbols to form the best-representative scalar fingerprint and as a result, 34 relevant

symbols are selected. Table 2.2 depicts the selected symbols with their definitions.

Once SMILES strings are converted to scalar fingerprints, City Block Distance (CBD)

is used to measure their similarities.

2.3.1.3. SMILES representation-based string Kernel. The idea behind the SMILES

representation-based string kernel is to compare the substrings of two strings [7]. Given

two strings S1 and S2, θ(S1) and θ(S2) respectively denote the frequencies of all the

possible substrings with at least q = 2 character length. The string kernel is defined

as the inner product of these frequencies (Equation 2.6).

K(S1, S2) = 〈θ(S1), θ(S2)〉 (2.6)

To illustrate the model better, let us provide an example for two SMILES strings

S1 = CCCOC and S2 = CCC1. For S1, the following substrings are generated with

the corresponding frequencies:

‘CC’:2,

‘CO’:1,

‘OC’:1,

‘CCC’:1,

‘CCO’:1,

‘COC’:1,
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Table 2.2. SMIfp symbol table [6].

no symbol definition

1 C nonaromatic carbon atoms

2 c aromatic carbon atoms

3 N nonaromatic nitrogen atoms

4 n aromatic nitrogen atoms

5 O nonaromatic oxygen atoms

6 o aromatic oxygen atoms

7 S nonaromatic sulfur atoms

8 s aromatic sulfur atoms

9 F fluorine atoms

10 Cl chlorine atoms

11 Br bromine atoms

12 I iodine atoms

13 P nonaromatic phosphorus atoms

14 p aromatic phosphorus atoms

15 B boron atoms

16 ‘X’ any other character

17 − single bonds

18 = double bonds

19 # triple bonds

20 [
Nonorganic elements, charges,
isotopes, protonation states

21 - negative charges

22 + positive charges

23 H explicit hydrogen atoms

24 ( acyclic branching points

25 1 nonfused ring systems

26 2 bicyclic systems

27 3 tricyclic systems

28 4 tetracyclic systems

29 5 pentacyclic systems

30 6 hexacyclic systems

31 7 heptacyclic systems

32 8 octacyclic systems

33 9 nonacyclic systems

34 % higher order ring systems



16

‘CCCO’:1,

‘CCOC’:1,

‘CCCOC’:1

For S2, the following substrings are generated with the corresponding frequencies:

‘CC’:2,

‘C1’:1,

‘CCC’:1,

‘CC1’:1,

‘CCC1’:1,

The inner product of S1 and S2 is performed between the common substrings

of the strings which equals K(S1, S2) = 2 × 2 + 1 × 1 = 5. In the same manner, the

similarity of S2 with itself equals to K(S2, S2) = 2×2+1×1+1×1+1×1+1×1 = 8 [7].

2.3.1.4. Edit Distance. Edit distance is one of the most widely used measures to make

comparisons between strings. Given two strings S1 and S2, edit distance is defined by

the number of minimum edit operations required to convert S1 into S2 [50]. There

are three main operations allowed which are insertion, deletion and substitution. For

instance, between two strings S1 = ‘night’ and S2 =‘delight’, edit(S1, S2) = 3. We

perform three operations: replacing ‘n’ with ‘l’ and inserting two characters, ‘d’ and

‘e’ .

2.3.1.5. Normalized Longest Common Subsequence (NLCS). The Longest Common

Subsequence (LCS) algorithm finds the common subsequence with the maximum pos-

sible length of two strings [51]. The algorithm does not require the characters in the

common subsequence to be consecutive. For example, given two SMILES strings S1 =

C(COCCOCCO) and S2 =C(CS(=O) the longest common subsequence lcs,

S1 = C(COCCOCCO)
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S2 = C(CS(=O)

lcs =C(CO)

Normalized LCS, is modified in a way such that the algorithm considers the lengths of

both strings. Given two strings S1 and S2 the NLCS is [2],

NLCS(S1, S2) =
length(LCS(S1, S2))

2

length(S1)× length(S2)
(2.7)

2.3.1.6. Combination of LCS Models (CLCS). Islam and Inkpen proposed a method

combining three algorithms each of which modifies the LCS algorithm in its own way [2].

The first algorithm is Normalized LCS (NLCS), which is described in the previous sec-

tion. It normalizes the LCS algorithm by considering the lengths of the strings. The

second algorithm, which is described in Figure 2.4, is Maximal Consecutive Longest

Common Subsequence starting from the character 1 MCLCS1.

input: ri, sj /∗ ri and sj are two input strings where |ri| = t, |sj| = n and t ≤ n

∗/

output: ri /∗ ri is the maximal consecutive LCS starting at character 1 ∗/

t← |ri|, n← |sj|

while |ri| ≤ 0 do

if ri ∩ sj then

return ri

else

ri ← ri\ct /∗ remove the right most character from ri /∗

end if

end while

Figure 2.4. MCLCS1 algorithm. Maximal consecutive LCS starting at any character

1 [2].
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The last one is Maximal Consecutive Longest Common Subsequence starting from

the character n MCLCSn [2]. Figure 2.5 depicts the algortihm of MCLCSn.

input: ri, sj /∗ ri and sj are two input strings where |ri| = t, |sj| = n and t ≤ n

∗/

output: x /∗ x is the maximal consecutive LCS starting at any character n ∗/

t← |ri|, n← |sj|

while |ri| ≤ 0 do

determine all n-grams from ri where n = 1... |ri| and

/∗ r̄i is the set of n-grams ∗/

if x ∈ sj where (x|x ∈ r̄i, x = Max(r̄i)) then

/∗ i is the number of n-grams and Max(r̄i) returns the maximum length

n-gram from r̄i ∗/

return x

else

ri ← ri\ct remove the right most character from ri

end if

end while

Figure 2.5. MCLCSn algorithm. Maximal consecutive LCS starting at any character

n [2].

Unlike LCS algorithm, both of these algorithms require common subsequences

to be successive. Before combining these methods, MCLCS1 and MCLCSn are also

normalized, becoming NMCLCS1 and NMCLCSn, respectively. Given two strings

S1 and S2, NMCLCS1 and NMCLCSn are calculated as [2],

NMCLCS1(S1, S2) =
length(MCLCS1(S1, S2))

2

length(S1)× length(S2)
(2.8)
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NMCLCSn(S1, S2) =
length(MCLCSn(S1, S2))

2

length(S1)× length(S2)
(2.9)

In order to compute the similarity between S1 and S2, the weighted sum of these

three algoritms are taken as follows:

v1 = NLCS(S1, S2)

v2 = NMCLCS1(S1, S2)

v3 = NMCLCSn(S1, S2)

Similarity(S1, S2) = v1 × w1 + v2 × w2 + v3 × w3 (2.10)

where w1, w2, w3 are the weights. The original method gives each algorithm the same

weight (w1 = w2 = w3 = 0.33).

2.3.1.7. TF-IDF based Cosine Similarity. Term Frequency - Inverse Document Fre-

quency (TF-IDF) weighting is one of the most popular methods in Information Re-

trieval to measure string similarity. One of the advantages of this method is that it

assigns more weight to the strings that share some exclusive terms. Term Frequency

(TF) reflects the number of times a term occur in the document [52]. Inverse Document

Frequency (IDF), on the other hand, assigns higher weights to the rare terms of the

document collection and it is described as [53],

idf(t,D) = log
N

|d ∈ D : t ∈ d|
(2.11)

where t, D and N denote the term, document corpus and number of documents in the

corpus respectively [53]. Tf-idf weighting is computed as follows,

tfidf = tf × idf (2.12)



20

In order to compute the similarity between two strings using this method, each string

has to be converted into a feature vector Vs. The number of features of Vs is equal

to the number of terms in the corpus. Each feature contains the tf-idf score of the

corresponding term in the string. Similarity of two strings is determined according to

the cosine angle between their vectors.

CosineSimilarity(S1, S2) =

∑m
i=1 VS1,iVS2,i
‖VS1‖‖VS2‖

(2.13)

VS1 and VS2 are feature vectors and m denotes the length of the vectors in Equation

2.13 [54].

2.3.2. 2D based similarity

In the 2D representation of a molecule, a graph model with atoms and the con-

necting bonds is shown. The 2D based similarity of a ligand is calculated using this

graph model and it is often referred to as fingerprint. A fingerprint is a bit vector (0 -

1), which is constructed by using depth-first search from each vertex of our atom-bond

graph of a molecule. For each path defined in the molecule, the graph is converted

into a hash value which is used to create the fingerprint vector [55]. The most com-

monly used method that calculates the similarity between fingerprints is the Tanimoto

coefficient.

2.3.3. 3D based similarity

3D representation denotes the three dimensional coordinates for each atom of the

molecule. The coordinates of each atom allows the calculation of distance between two

molecules. Besides atomic coordinates, 3D pharmacophores, shapes, potentials, and

spectra are also used as descriptors.
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2.4. Use of Ligand Similarity for Protein Clustering

Prior studies have classified proteins based on their sequence, structural and

functional similarities. For instance β-lactamases are divided into four classes according

to their sequence similarities, GPCRs are separated into four classes by a model which

considers both sequence and functional similarity. In this study, we propose a ligand-

based clustering model, where proteins are grouped by considering the shared identical

or similar ligands without requiring any information on the structures of the proteins.

The first attempt to cluster proteins on a network model was proposed by Yildirim

et al. in which they create a network called target-protein network by connecting pro-

teins (nodes) if they have at least one common ligand [56]. However, this study did not

consider the similarity of the different compounds by which the proteins are targeted.

Using ligand similarity to characterize the relationship among biomolecules has gained

the attention of the researchers in the recent years. A study of the relationship between

alpha helical proteins and their ligands showed that proteins with at least 45% sequence

identity tend to bind to similar ligands [57]. In a more exhaustive study that included

87 protein super families, it was observed that sequence similarity can be as low as

30% for proteins to interact with similar ligands [58]. Keiser et al. used ligand chemi-

cal similarity information to cluster a subset of activity classes in the ‘2006.1 MDDR’

database and showed that using only ligand information, biologically related proteins

grouped together [59]. It was found that when two proteins bind to the same ligand, it

is likely that the ligands of one of these proteins will bind to the other protein as well.

This information is used in predicting the structure of protein-ligand complexes [60].

Using ligand similarity rather than using sequence and structure similarity allowed the

clustering of some sequentially different proteins [61]. Cheng et al. used both protein

and ligand similarity representing the compounds and the targets that they bind to as

nodes in a bipartite network. The binding affinity or the inhibitory activity was used

for calculating edge weights [62,63]. The network based model they proposed was used

to predict compound-protein interactions without the use of structural information of

the components.
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2.5. Use of Ligand Similarity for Protein-Ligand Interaction Prediction

The prediction of the interactions between protein and ligands is a significant

task which allows us to discover new drugs for proteins or novel proteins for existing

drugs. There have been two basic generally accepted approaches to drug discovery,

the one which is called ligand-based and the one which is called structure-based or

docking. Ligand-based approaches follow an experimental process where the known

ligands of a target are screened against a large compound library [64]. Structure-based

approaches, on the other hand, utilize the structure of the binding site of a target in

order to decide the best suitable ligand by screening a large database [64]. Ligand

based approaches lack applicability in cases in which the target is orphan, whereas

structure-based approaches are unable to make predictions when 3D structure of the

target is not available. There are also other approaches such as literature mining where

interacting genes and compounds are extracted from the related articles [65].

With chemogenomics, which overcomes the problems of previous strategies, a new

era has begun in the field of drug discovery [66]. Chemogenomics is an interdisciplinary

field that aims to shed a light to basic questions such as how to define ligand similarity,

what properties make two ligands similar or whether ligands can be predicted for a

given target [67]. All chemogenomic approaches are built on these two basic assump-

tions: (i) “chemically similary compounds also should share target proteins”, and (ii)

“targets that share similar binding sites should also share ligands” [40]. Therefore,

chemogenomics has three main components: (i) set of compounds (ii) set of targets

(iii) reliable interaction information [40]. Among these components, we described the

ligand and target spaces in the previous sections. Target-ligand space, however, is the

combination of these three components such that targets are the rows and ligands are

the columns of a matrix and each cell points to an interaction (e.g. IC50, Ki).

Chemogenomics is divided into three approaches by Ronan [40], the first of which

is called ligand-based chemogenomics and aims to design specific compound libraries for

protein families or sub-families based on the the idea that of similar ligands have similar

biological activities. The second approach, target-based chemogenomics, concentrates
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on target binding site similarity by which the unknown ligands are inferred using the

known ligands of similar targets. Finally, target-ligand based chemogenomics utilizes

target-ligand space to make predictions for a single target by using ligand-binding

information of targets.

Many different machine learning approaches based on ligand-target model have

been proposed as a response to the drug-target prediction issue [68–71]. Most of these

models made use of kernel functions to calculate similarity. Bleakley et al. developed a

methodology that combines bipartite graphs with local supervised models [72]. Gaus-

sian interaction kernel, introduced by Laarhoven et al., was built on binary vectors

indicating interaction status (present/absent) of compounds and targets [73]. Jacob et

al. used different target kernels for SVM classification while Geppert et al. presented

a comparative study of different SVM models for the task of ligand-protein predic-

tion [3, 74]. Among the presented studies, the ones which require the use of a ligand

kernel utlize 2D fingerprint representation with Tanimoto similarity.

The focus of our study is to analyze the effect of ligand similarity on this task. We

select the study of Jacob et al. as a base, and replicate their study by replacing their

original ligand kernel with the ones we select. In Jacob et al.’s study, each ligand-target

pair is represented by a vector of features such that,

Φ(d, t) = Φligand(d)⊗ Φprotein(t) (2.14)

where Φ(d, t) is the tensor product of Φligand(d), which denotes the feature vector of a

compound d and Φprotein(t), which represents the feature vector of target protein t [3].

Factorization of Equation 2.14 into the Equation 2.15,

(Φligand(d)⊗ Φprotein(t))T (Φligand(d
′)⊗ Φprotein(t′))

= Φligand(d)TΦligand(d
′)× Φprotein(t)TΦprotein(t′) (2.15)

allows the use of the inner product of the vector models of ligands and targets [3]. This
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representation can be easily converted into kernel space by [3],

Kligand(d, d
′) = Φligand(d)TΦligand(d

′)

Kprotein(t, t′) = Φprotein(t)TΦprotein(t′)

K((c, t), (c′, t′)) = Kligand(d, d
′)×Kprotein(t, t′) (2.16)

Therefore, this form can be integrated into any problem solving methodology which

uses kernel models such as SVM. Two-Class SVM, introduced by Vapnik, aims to find a

maximum margin hyperplane that separates positive instances from negatives in order

to solve the classification problem. For cases where data is not linearly separable, SVM

aims to,

min
1

2
‖w‖2 + C

∑
t

ξt subject to,

rt(wTxt + w0) ≥ 1− ξt (2.17)

where the sample X = {xt, rt}, ξt is the slack variable and C is the penalty factor of

misclassification [75].

.
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3. MATERIALS AND METHODS

3.1. Network Models

3.1.1. Data collection

We collected our data set of protein-ligand interactions from the Protein Data

Bank (PDB) database (http://www.uniprot.org/uniprot, accessed On October 27,

2013). We selected the proteins based on their Enzyme Commission (EC) and Protein

Family (PFAM) numbers. The β-lactamase base was obtained by selecting EC 3.5.2.6

that denotes the β-lactamase family, PF13354 that denotes the β-lactamase enzyme

family, and PF00144 that represents the β-lactamase domain. The PBP family pro-

teins were obtained by selecting EC 3.4.16.4 that represents DD-transpeptidase family,

PF00905 that refers to the transpeptidase family, and PF00768 that denotes the pep-

tidase s11 family. The idea behind combining different classification schemes was to

be able to detect entries which may not be reported in one classification scheme, but

might be reported in another one. For instance, extended spectrum β-lactamase GES-5

(Q09HD0) was reported under the PF13354 classification, whereas EC 3.5.2.6 did not

contain information about it.

Identification system in PDB is different than the one in UniProt. PDB assigns

unique identifiers (IDs) to each entry including different complexes of the same protein.

For instance, UniProt accession number P62593 for β-lactamase TEM is represented

as 62 PDB chains. Therefore, we first mapped all the PDB IDs to the corresponding

UniProt accession numbers. The final data set used in this study, consists of unique

UniProt acession numbers, as shown in Table 3.1. Throughout this thesis proteins are

referred to by their six character UniProt accession numbers (e.g. P00811) whereas

ligands are referred to by their PDB IDs (e.g. IM2).

A total of 146 proteins with unique UniProt accession numbers were retrieved.

We then filtered out the data set using the following criteria: (i) Ions (ZN, CO, MN
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Table 3.1. Distribution of the proteins in the data set according to EC and PFAM

classifications.

ID num. of proteins num. of ligands

EC 3.5.2.6 60 222

EC 3.4.16.4 16 61

PF00905 36 72

PF00768 12 60

PF13354 37 136

PF00144 50 203

TOTAL 111 304

etc.) were removed; (ii) Ligands which are reported in PDB to interact with more than

3000 targets were removed. Thus, the proteins that do not bind to any ligand or the

proteins that only bind to ligands that are filtered by the criteria described above were

not included in the protein data set in our study. As a result, 111 unique proteins

represented in the PDB by more than 2000 structures were included in our database.

3.1.2. Sequence Alignment

Multiple sequence alignment was performed on the 111 proteins in the data set

using COBALT [76] to provide an insight about the distribution of the proteins in the

data set according to their amino acid similarities.

3.1.3. Ligand Similarity

The ligand molecules are defined using the chemical hashed fingerprint model,

which conveys the information of the 2D structure in bit strings (0 and 1). Then to

calculate the similarity between two fingerprints, Tanimoto coefficient is used. We

used ChemAxon (http://www.chemaxon.com/), which provides JChem 6.0 interface

for .NET development environment, to create fingerprints from the SMILES repre-
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sentations of the ligands and then, to calculate the Tanimoto similarity between the

pairs. PDB also uses ChemAxon to advance the chemical structure search options

(http://www.rcsb.org/pdb/search/advSearch.do).

3.1.4. Ligand Clustering

Ligand clustering was performed using ChemMine [77] with the average linkage

hierarchical clustering model.

3.1.5. Protein-ligand binding network construction

The networks presented in this study were visualized and analysed using Cy-

toscape (Version 2.8.3; http://www.cytoscape.org/) [78]. We proposed three different

undirected network models, namely unweighted identity, weighted identity, and simi-

larity networks to represent protein-ligand binding information. In all three networks,

the target proteins were represented as the nodes and the ligands were represented as

the edges. Figure 3.1 depicts the creation of the network models with four proteins

A,B,C,D shaped as circles and five ligands lg1, lg2, lg3, lg4, lg5 shaped as diamonds.

For each protein, ligands that it binds to are given together. A sample Tanimoto

similarity matrix is also provided for the ligand pairs.

• In the unweighted identity network, A and B, which share two identical ligands,

are connected with an edge of weight 1.

• In the weighted identity network, A and B are connected with an edge of weight

2, since they have two common ligands, lg1 and lg5.

• In the similarity network, the nodes that bind to ligands whose pairwise simi-

larities exceed the 0.7 cut-off value are connected. Therefore, we have two new

connections in the similarity network: C and D are connected with an edge of

weight 0.8 (lg2–lg4), and A and C are connected with an edge of weight 0.75

(lg2–lg3). Since A and B also share chemically similar ligands along with the

identical ones, the weight of the edge connecting them becomes 2.8.
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Figure 3.1. Generation of unweighted identity network, weighted identity network

and similarity network for a sample system. Ligand binding information of 4 proteins

and 5 ligands is used to construct networks.
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3.1.5.1. Unweighted Identity Network. Unweighted identity network is the model where

we illustrated the interactions in the simplest form. In this model, two nodes with iden-

tical ligand(s) are connected. Two nodes, i.e. two proteins, are connected if they share

an identical ligand. The edges are unweighted. In other words, even if two proteins

share more than one ligand, they are still connected with a single edge of weight 1.

3.1.5.2. Weighted Identity Network. In the weighted identity network, the number of

identical ligands shared by two nodes is taken into account. For instance, if two nodes

have five common ligands, the weight of the edge connecting these proteins is set to

5. Unlike the unweighted identity network, the weighted identity network provides

information on the number of shared ligands.

3.1.5.3. Similarity Network. The similarity network is a weighted network model,

where the chemical similarities between the ligand pairs are considered. This model

enables us to link two nodes that do not have any common ligands, but bind to ligands

whose chemical similarity is above some pre-determined threshold. Matter revealed

that similarity cut-off value of 0.85 resulted in complete enclosure of the biological

classes in his compound data set of IC93 [79]. It was previously shown that compounds

with similarity values higher than 0.7 also had similar biological activity [57,80]. There-

fore, in this study, the similarity threshold was selected as the Tanimoto coefficient of

0.7. In other words, ligands with similarity value higher than 0.7 contributed to the

edge weights. The weight of the edge between two nodes (i.e. proteins) X and Y

was computed by taking the sum of the pairwise similarity scores among their ligands

(Equation 3.1).

weight =
n∑

i=1

m∑
j=1

(Tanimoto(Xi, Yj) > 0.7) (3.1)

Xi represents the ith ligand that X binds to, and Yj represents the jth ligand that
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Y binds to. Higher weight suggests stronger relationships between the corresponding

nodes. An advantage of the similarity network is that it is able to contribute more nodes

to the network, which could not be achieved by using the previous models. Moreover,

the similarity based model aims to discover some hidden relationships or emphasize

the existing ones using the ligand chemical similarity feature.

3.1.6. Network Parameters

3.1.6.1. Centrality. Degree centrality is measured according to the number of con-

nections a node has. As the number of nodes that a node connects to increase, the

centrality degree of that node becomes higher. Betweenness centrality measures how

many times a node acts as bridge in the shortest path between two other nodes. As

a part of the network analysis, we also measured these centrality metrics on our net-

work models. The betweenness and degree centrality metrics were computed using the

CytoHubba (Version 1.6) plugin for Cytoscape [81].

3.1.6.2. Community. MCODE (Molecular Complex Detection) (Version 1.32) was

used in this study to detect densely connected modules in our networks [82]. MCODE

uses a vertex-weighting metric which measures the cliquishness of a node’s neighbor-

hood. The haircut model was used with a value of three for the K-core to detect the

clusters. The degree cut-off value, which indicates the minimum number of links for

each node to be calculated, was set to two. We only considered the communities of

four or more nodes.

3.1.7. Pair Scores

The pair score indicates the weight of the edge between two nodes according to

the model it is calculated in. In the unweighted identity network, since the weights of

all edges are equal to 1, the scores of all possible pairs are the same. For the weighted

identity and similarity networks, we calculate the weight of the edge between each

protein pair. In the weighted identity network we consider the number of identical
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ligands two proteins share, whereas in the similarity network we also consider the

chemical similarity of the ligands. As illustrated in Figure 3.1, in the weighted identity

network the weight of the edge between nodes A and B is equal to 2, which indicates

the score for the A–B pair is 2. In the similarity network, since the ligand pairs whose

similarities are above 0.7 also contribute to the weight, the weight of the edge between

nodes A and B becomes 2.8. Therefore, the score for the A–B pair is now equal to 2.8.

The pair scores help us to infer the protein pairs that are strongly associated

based on their ligands. The complete list of the pairs in the weighted identity and

similarity models are provided as a supplementary file.

3.2. Machine Learning

3.2.1. Data collection

The complete data set, which is used by Jacob et al., is downloaded from

http://bioinformatics.oxfordjournals.org/content/24/19/2149/suppl/DC1. Their data

set of ligand interaction information for protein families, namely, GPCR and ion chan-

nels are provided by KEGG BRITE Database. The data is composed of the compounds

of each target of the regarding protein family, all of which are formed by hierarchical

subfamilies. For the experiments, for each hierarchy level only one protein is selected

as a representative. Orphan targets and compounds without molecular description are

filtered. Then, negative ligand-target pairs are produced by selecting compounds ran-

domly from the compounds of the other targets. The reason behind this procedure is

that some of these negative pairs may actually be positive since the targets have not

been experimented for those particular compounds. Each data point consists of these

three main components, (i) target ID, (ii) compound ID, and (iii) label for interaction

status. Table 3.2 provides a simple illustration of the data points, for instance 1.2.7

is the family hierarchy ID for the protein selected as representative for 1.2.7 family in

the GPCR data set.

As a result, for enzymes 2436 data points (1218 known pairs and 1218 generated false
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Table 3.2. Illustration of sample data points that are generated for each protein

family.

compound ID target ID label

D02066 1.2.7 true

C07533 1.2.7 true

C00029 1.2.7 false

D02066 1.2.9 true

pairs), formed by 675 proteins and 524 ligands; for GPCR 798 points, formed by

100 proteins and 219 compounds; and for ion channels 2330 data points, formed by

interactions among 114 proteins and 462 ligands, are generated. We should report that

the data points in the online provided data set are different than the reported version,

thus we use the data illustrated below in Table 3.3. In this study we use the GPCR

and ion channels data sets.

Table 3.3. Distribution of the proteins and ligands in the data set and the number of

data points generated.

GPCR ion channels

proteins 100 114

ligands 219 462

data points 884 2330

3.2.2. Target Kernels

The hierarchy kernel is selected to measure protein similarity since it outper-

formed the other target kernels, namely Dirac, Mismatch, Local Alignment, and Mul-

titask when tested with the 2D Tanimoto ligand kernel [3].
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3.2.3. Ligand Kernels

In this study, instead of using the 2D Tanimoto similarity on compounds, we

experiment with several different similarity kernels based on SMILES representation of

compound data. The compounds in the data set provided as mol files were converted

into unique SMILES strings via ChemAxon library JChem 6.0.2.215 .NET API in

Visual Studio 2010 using C# programming language [46].

All of the kernels presented below were developed using the Java programming lan-

guage on NETBeans IDE 7.4. The LCS, Combined LCS and Edit distance algorithms

introduced in the Theory Chapter are used as similarity kernels without any modifica-

tion.

3.2.3.1. LINGOsim Kernel. LINGOsim, introduced in the theory section, is based on

LINGO length q = 4. Ligand kernels are created for the values of q = 3, 4, 5. We also

introduce weighted LINGOsim, described in Equation 3.2, which assigns weight values

for each LINGO in the whole data set.

weighti =
TFi

N
(3.2)

where TF (i) denotes the term frequency of LINGO of type i and N represents the

number of unique LINGOs created from the whole compound SMILES database. We

then rearrange the original LINGOsim equation as,

Tc =

∑m
i=1(1−

|NS1,i −NS2,i|
|NS1,i +NS2,i|

)weighti

m
(3.3)
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where m is the number of LINGOs created from the SMILES string of any of the

compounds while NS1,i represents the number of LINGOs of type i in compound S1,

NS2,i represents the number of LINGOs of type i in compound S2 and weighti refers

to the weight of LINGO of type i.

3.2.3.2. LINGO based TF-IDF cosine similarity. We propose a model where we com-

bine LINGO representation with the TF-IDF weighting-scheme. TF-IDF has originally

been developed in the Information Retrieval domain for weighting the words in the

documents. Words are selected as terms of a document corpus and each document is

treated as a collection of words (terms). In our model, we treat each SMILES string as

a set of LINGOs and LINGOs are the terms of our model. LINGO length q is selected

as 4 as it is in the original algorithm.

Let us assume we have the following compounds with the given SMILES in our ligand

data set, SMILES1 :CCOC1c, SMILES2 :NCCOC1, and SMILES3 :cc1N. We first

modify SMILES strings, then generate LINGO sets for each of them such that,

LINGOSet(SMILES1) = CCOC,COC0, OC0c,

LINGOSet(SMILES2) = NCCO,CCOC,COC0,

LINGOSet(SMILES3) = cc0N .

Thus, we have a sample system that contains 5 unique LINGOs and 3 compounds.

Table 3.4 below illustrates the frequency scores for all LINGOs(terms) for the corre-

sponding SMILES string (document) which is utilized as set of LINGOs. For each

SMILES string, occurences of the LINGOs are counted to find the term frequency.

Table 3.5 depicts the inverse document frequencies (IDFs) of all the LINGOs. IDF

weighting-scheme allows the model to assign importance to the rare LINGOs. After

term frequencies and inverted term frequencies of all the LINGOs are calculated, TF-

IDF cosine similarity is applied to calculate the similarity between two compounds.
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Table 3.4. TFs of each LINGO for the corresponding SMILES.

terms SMILES1 SMILES2 SMILES3

CCOC 1 1 0

COC0 1 1 0

OC0c 1 0 0

NCCO 0 1 0

CC0N 0 0 1

Table 3.5. IDFs of each LINGO are depicted.

terms idf

CCOC log(3/2)

COC0 log(3/2)

OC0c log(3/1)

NCCO log(3/1)

CC0N log(3/1)



36

3.2.3.3. SMIfp Kernel. The original SMIfp method converts each SMILES string into

a 34-dimensional scalar fingerprint, and then performs City Block Distance (CBD)

on these vectors to find their similarity. In this study, we use Euclid and Tanimoto

distances in addition to CBD in order to measure the effect of the distance metric on

the model.

We then present a 38-dimensional model which is modified according to our

SMILES database. First, we extract the number of occurrences for each character

in our compound SMILES database for each of the protein families. Then, we compare

the frequent characters with the original 34 character list of SMIfp. We find out that

the characters ‘@’, ‘\’, ‘/’, ‘.’ which are ignored by the SMIfp method, are among the

most frequent characters. In addition, the ‘%’ character, which is listed as frequent,

is a rather rare character. ‘@’ and ‘@@’ characters are called as chiral specification

that indicates the arrangement of the neighbour atoms is anti-clockwise and clock-wise

respectively. ‘/’ and ’\’ are the directional bonds. Therefore, we replace ‘%’ with ‘.’,

and we add four more characters, ‘@’, ‘@@’, ‘\’, and ‘/.’ We then, use Euclid, CBD and

Tanimoto to measure the similarity between two 38-dimensional scalar fingerprints.

3.2.3.4. SMILES based substring similarity kernel. We use SMILES based similarity

method of Cao et al. that utilizes common substring frequencies. We also tested a

modified version of this kernel, where we replace ring numbers [1-9] with 0. We refer

to this model as modified substring similarity kernel.

3.2.4. Experiment Setup

Jacob et al. follow two procedures for each target using the described data points

created for each protein family data set [3].

• For each target protein p, the first procedure generates k-folds where k = min(n, 10)

for each data point where n is the number of data points related to p. Then it

then utilizes the data points of the other target proteins as training samples along
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with some of the data points of p itself.

For instance, let us assume our target protein is 1.2.9 (Adrenergic receptor, beta

3) from the GPCR family, thus data points created for this target look like as it is

depicted in Table 3.6. Each line represents a data point in which label indicates

the presence of an interaction between the given target and drug. Folds are named

as ‘train’ and ‘test’ to indicate the role of the data point in the classification. As

it is shown in Table 3.6, target 1.2.9 is trained with other proteins for the first

fold, whereas in the second fold it is used as a test sample.

Table 3.6. Sample data points created for target 1.2.9 (Adrenergic receptor, beta 3).

compound ID target ID label folds

D02066 1.2.7 true train train train

C07533 1.2.7 true train train train

C00029 1.2.7 false train train train

D02066 1.2.9 true train test train

Briefly on each fold, SVM classifier is trained with the data points marked as train

and is tested on the unused data points of p. The idea behind this experiment is

to quantify the impact of considering ligands of other proteins for each protein

tested on the performance of the classifier.

• The second procedure uses data points of target p only for testing and trains the

SVM on the remaining data points that belong to other proteins. By this way, it

aims to measure the success of prediction.

In our study, we hold the first experiment using the provided data points to test

our ligand kernels.
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4. RESULTS

4.1. Ligand-centric β-lactamase superfamily networks

In this section we provide a detailed examination of the β-lactamases and PBPs

in the Protein Data Bank database with the ligands that they bind to. We also discuss

the three different network models constructed using ligand-binding information.

4.1.1. Database

4.1.1.1. Proteins. Our protein data set which was collected from PDB contains 111

protein structures with unique UniProt accession numbers, all of which bind to at least

one ligand from the ligand data set. 43 of these proteins bind to a single ligand. The

distribution of the β-lactamases based on the Ambler classification of β-lactamases is

as follows: 28 Class A β-lactamases, 17 Class B (Metallo) β-lactamases, 10 Class D

β-lactamases and 10 Class C β-lactamases. Our data set also contains 37 PBPs. There

are 9 proteins that do not fit into any of these groups including the β-lactamases with no

Ambler class definition. β-lactamase ampC (P00811) has the highest number of ligands

(61 ligands). It is followed by SHV-1 (P0AD64), β-lactamase CTX-M-9a (Q9L5C8),

β-lactamase blaA (P0C5C1), DD-carboxipeptidase from Actinomadura sp. organism

(P39045), and DD-carboxipeptidase from Streptomyces sp. organism (P15555) all of

which bind to more than 15 ligands.

4.1.1.2. Ligands. Our ligand data set includes 304 ligands with unique PDB identifiers

(IDs), 222 of which only bind to a single protein in the data set. IM2 (Imipenem)

interacts with the highest number of proteins (12 proteins). It is followed by KCX

(Lysine NZ-Carboxylic acid) with 11 protein interactions, and PNM (Penicillin G)

and MES (2-(n-morpholino)-Ethanesulfonic acid) with 10 protein interactions. The

molecular weights of the ligands mostly vary between 30 and 800. The mean of the

molecular weights of the ligands is 304 and the median is 301. There are 15 ligands
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whose molecular weights are smaller than 100. The distribution of the ligand molecular

weights is provided in Figure 4.1a.

Figure 4.1. MW and Tanimoto similarity score distribution of the 204 ligands in our

data set. (a) Distribution of the molecular weights. (b) Distribution of Tanimoto

chemical similarity scores for the 47056 pairs.

The distribution of the pairwise Tanimoto similarity amongst 304 ligands is shown

in Figure 4.1b. These data correspond to all possible unique pairs of ligands, excluding

ligand A–ligand A pairs, where A represent any ligand in the data set, which always
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yield a similarity score of 1. 255 out of 46056 ligand pairs have Tanimoto similarity

scores above 0.7. The majority of the ligand pairs have similarity scores between 0.1

and 0.2. The mean score is 0.169 and the median is 0.146.

Since only 82 out of 304 ligands bind to more than one protein in our dataset,

the weighted identity network is created by 82 ligands. However, with the use of ligand

similarity, the similarity network is constructed by 152 ligands which almost double the

number of contributor ligands in the weighted identity network. Besides, the ligands

added to the network model are mostly β-lactamase and PBP oriented ones.

4.1.1.3. Comparison of Sequential and Functional Similarities. The multiple sequence

alignment of 111 protein sequences, which is performed using COBALT, shows similar-

ity with the Ambler’s classification scheme of β-lactamases (Figure 4.2a). PBPs are

sequentially closer to the Class D β-lactamases. Average hierarchical clustering based

on pairwise ligand similarity for 304 ligands is performed using ChemMine (Figure

4.2b) and each branch is colored according to the protein class that a ligand binds to.

A total of 249 ligands bind to the same class of proteins, and four ligands only bind to

transesterase protein, two ligands only bind to d-amino acid amidase, and two ligands

bind to unknown β-lactamase like proteins. The rest of the ligands bind to more than

one different classes of proteins which are left colourless. The phylogenetic trees for

both of the representations are visualized using Interactive tree of life (ITOL) [83].

The majority of the ligands bind to either Class A β-lactamases or PBPs. There

are 78 ligands that only bind to Class A β-lactamases and 75 ligands that only bind to

PBPs. The number of ligands that only bind to Class C β-lactamases is 53, whereas

the number of ligands that only bind to Class B is relatively less, 30. Only five ligands

are identified which only bind to Class D β-lactamases whereas, 17 ligands are found to

bind to Class D β-lactamases along with other classes. We can infer that most of the

ligands that bind to Class D β-lactamases, also bind to other classes of proteins. The

ligand similarity tree seems more diverse, yet we can capture some small clusters of

ligands which reflect a protein class such as PBPs, Class C β-lactamases, and Class A
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Figure 4.2. Clustering of proteins and compounds. (a) Multiple sequence alignment

of 111 protein sequences. (b) The hierarchical clustering of the 304 ligands. (Blue:

PBPs, Green: Class A, Dark Blue: Class C, Yellow: Class D, Orange: Class B).

β-lactamases. The diversity of the proteins according to their ligand chemical similarity

suggests that clustering of proteins based on ligand sharing can lead interesting results.

4.1.2. Protein-ligand binding networks

It is important to detect the densely connected communities and to identify the

central nodes using centrality metrics such as betweenness and degree centralities for

a better understanding of biological networks. In this study, where the network nodes

represent proteins and the edges represent shared or chemically similar ligands, iden-

tifying central nodes and communities yielded important clues on a ligand centric

classification of β-lactamases. We now explain the similarities and differences between

the three networks.

4.1.2.1. Unweighted Identity protein-ligand binding network. The unweighted network

connects target proteins that share a common ligand regardless of the number of shared
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ligands between them. The unweighted network comprises 99 proteins. 12 of the 111

proteins in our initial protein data set are excluded, since they do not share any ligands

with other proteins. In the unweighted network three densely connected clusters are

detected (Table 4.1). These clusters are ranked according to their MCODE scores,

calculated by multiplying the density of the cluster by the number of the members. 46

of the 99 proteins are placed within a cluster.

Figure 4.3. Communities in the unweighted identity network. Nodes are colored

according to their MCODE scores. From blue to white, the scores of the nodes

increase. (The same colouring scheme is used for the other community figures.).

Cluster 1 has the highest MCODE score and contains 35 proteins. It includes

the top-three highest scoring nodes in terms of degree centrality in the unweighted

network, namely ampC, TEM and PBP 1a (Figure 4.3). It is not suprising that both

ampC and TEM are listed as the central nodes since they are among the most studied

β-lactamases. Therefore, this knowledge suggests that PBP 1a is also experimented

with different ligands. The majority of the proteins in the cluster are Group 2 β-
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Table 4.1. Communities in the Unweighted Identity Network.

Num Names

Cluster 1

Class A 9

blaB (P52664), penP (P00808), TEM (P62593),
blaZ (P00807), SED-1 (Q93PQ0),GES-1 (Q9KJY7),

GES-5 (Q09HD0), Toho-1 (Q47066) , nmc-A (Q7ATJ4)

Class B 1 ccrA (P25910)

Class C 1 ampC (P00811)

Class D 10

OXA-10 (P14489), OXA-1 (P13661), OXA-2 (P0A1V8),
OXA-23 (Q9L4P2), OXA-46 (Q8GRH0),

OXA-48 (Q6XEC0), blaOXA-10 (Q7BNC2),
blaOXA-13 (Q51400),

blaOXA-33 (Q8RLA6), blaOXA-45 (Q7WZC7)

PBP 10

(2 ×) PBP1a (Q9RET4, G1C794), PBP3 (Q51504),
(2 ×) DD carboxipeptidase (P15555, P39045),

DD carboxipeptidase DacB (P24228),
PBP A (P71586), DD carboxipeptidase DacA (P0AEB2),

(2 ×) BlaR1 (Q7WU28, P18357)

Others 4

TII2115 protein (Q8DH45),
(3 ×) 6-aminohexanoate-dimer hydrolase

(Q59710, P07061, P07062)

Cluster 2

Class B 4
NDM-1 (C7C422), IMP-1 (P52699),

blaIMP-1 (Q79MP6), β-lactamase II (P04190)

Class C 1 CMY-10 (Q99QC1)

PBP 1 Peptidoglycan glycosltransferase (C8WPP1)

Others 1 β-lactamase (D1C5R0)

Cluster 3

Class A 4
GES-2 (Q93F76), GES-5 (A0EL75),

SHV-3 (P30896), β-lactamase (Q8EMP8)

lactamases and PBPs. The cluster is composed of three sub clusters where the first

subgroup (S1) contains only Class D β-lactamases except for BlaR1 (Q7WU28), which

has been shown to have high structural similarity with Class-D β-lactamases [84]. The

S1 subgroup is connected by the KCX ligand.

The second subgroup (S2) of the cluster is dominated by Class A β-lactamases

and PBPs, whereas the third subgroup (S3) does not define a theme, but contains three
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6-aminohexanoate-dimer hydrolases which belong to the β-lactamase family according

to their PFAM identification and which show similarities with Class A and Class C

β-lactamases [85, 86]. S2 is connected mostly by the IM2 and PNM ligands, whereas

S3 is constructed by the MES ligand edges.

AmpC, TEM, PBP1a, OXA-10 and DD carboxipeptidase, indicated by bold black

circles in Figure 4.3, have the highest betweenness centralities and act as bridges

between the subgroups of Cluster 1. Betweenness centrality is the indicator of how

much the nodes affect the flow of information through the network. In ligand sharing

network, it can be said that the nodes listed as important according to betweenness

cenrality have the ability of binding even the distant nodes. Further investigation of

these nodes may give clues about ligand-mediated evolution.

Cluster 2 contains seven proteins; four Class B β-lactamases as well as the Class C

β-lactamase CMY-10, β-lactamase with no Ambler class identification (D1C5R0) and

a peptidoglycan glycosltransferase protein (C8WPP1). ACY (Acetic Acid) is the only

ligand that connects this cluster. Cluster 2 is fully connected since ACY only binds to

these proteins. Except for CMY-10, D1C5R0 and C8WPP1, all other proteins in the

network bind to other ligands besides ACY. Acetic acid is a rather non-specific ligand

when compared to the other ligands.

Coordinates for β-lactamase with no Ambler class definition was deposited in 2012

under the name of “beta-lactamase from Sphaerobacter thermophilus dsm 20745” and

publication for its structure is not yet available. The sequence is 31.5%1 similar to a

Class A β-lactamase. The fact that it is clustered with Class B β-lactamases in the

ligand-based network, might indicate that it is a Class B β-lactamase.

Cluster 3. All four proteins in this cluster are Class A β-lactamases. Class A

β-lactamase (Q8EMP8) so called, OIH-1, was described as not only the first example

of antibiotic resistance that evolved in deep-sea, but also as the most highly halo-

tolerant enzyme discovered [87]. All edges in this network are formed by the EPE

1Protein sequence similarity search through PDBe (http://www.ebi.ac.uk/)
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(Ethanesulfonic Acid) ligand.

4.1.2.2. Weighted Identity protein-ligand binding network. Weighted identity network

is the weighted version of the unweighted network model, where the number of shared

ligands is also considered. The weighted identity network consists of 99 nodes. The net-

work is constructed by number of 481 interactions between protein pairs. Six densely

connected clusters are detected that include 53 out of the 99 nodes (Table 4.2). It is

observed that with the use of weighting based on the number of shared ligands; the

communities identified by MCODE have changed. Instead of having one big cluster

(Cluster 1 in the unweighted identity network), we now have several smaller commu-

nities. Indeed, the first three clusters of the weighted identity network correspond to

the three sub clusters of Cluster 1 of the unweighted network (Figure 4.4).

Figure 4.4. Communities in the weighted identity network. Cluster 1, Cluster 2,

Cluster 3, Cluster 4, Cluster 5, and Cluster 6.

Cluster 1. There are 12 members in Cluster 1 half of which belong to PBPs.

Cluster 1 of the weighted identity network comprises 12 proteins from the second
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Table 4.2. Communities in the Weighted Identity Network.

Num Names

Cluster 1

Class A 4
TEM (P62593), SED-1 (Q93PQ0),

GES-1 (Q9KJY7), GES-5 (Q09HD0)

Class C 1 ampC (P00811)

Class D 1 blaOXA-13 (Q51400)

PBP 6

PBP1a (G1C794), PBP3 (Q51504), PBP A (P71586),
DD carboxipeptidase (P39045),

DD carboxipeptidase DacA (P0AEB2), BlaR1 (P18357)

Cluster 2

Class A 5
SHV-1 (P0AD64), blaZ (P00807),

penP (P00808), blaA (P0C5C1), Toho-1 (Q47066)

Class D 9

OXA-1 (P13661), OXA-2 (P0A1V8), OXA-10 (P14489),
blaOXA-10 (7BNC2), blaOXA-23 (Q9L4P2),

blaOXA-33 (Q8RLA6), blaOXA-45 (Q7WZC7),
OXA-46 (Q8GRH0), blaOXA-48 (Q6XEC0)

PBP 3
DD carboxipeptidase DacB (P24228),

DD carboxipeptidase (P15555), BlaR1 (Q7WU28)

Others 1 TII2115 protein (Q8DH45)

Cluster 3

Class A 2 blaB (P52664), nmc-A (Q7ATJ4)

Class B 1 β-lactamase II (P25910)

PBP 1 PBP 1A (Q9RET4)

Others 3
(3 ×) 6-aminohexanoate-dimer hydrolase

(Q59710, P07061, P07062)

Cluster 4

Class B 4
NDM-1, β-lactamase II (P04190),

IMP-1 (P52699), blaIMP-1 (Q79MP6)

Class C 1 CMY-10 (Q99QC1)

PBP 1 Peptidoglycan glycosyltransferase (C8WPP1)

Others 1 β-lactamase (D1C5R0)

Cluster 5

Class A 3
blaCTX-M-9a (Q9L5C8),

blaCTX-M-14 (Q9L5C7), CTX-M-27 (Q840M4)

PBP 1 D carboxipeptidase DacC (P08506)

Cluster 6

Class A 5
GES-2 (Q93F76), GES-5 (A0EL75), SHV-3 (P30896),

blaSHV-49 (Q5VCA8), β-lactamase (Q8EMP8)
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subgroup (S2) of Cluster 1 of the unweighted identity network.

Cluster 2 is formed by 18 nodes. It includes the first subgroup (S1) of Cluster 1 of

the unweighted network, as well as six members from S2 of Cluster 1 of the unweighted

network, which are displayed as blue nodes in Figure 4.3, and BlaA and SHV-1. Cluster

2 has two subunits, one is dominated by Class A β-lactamases which are connected by

PNM and the second one is dominated by Class D β-lactamases connected by KCX.

The Tll2115 protein in the first subunit is defined as PBP-A and described to be highly

related to Class A β-lactamases, mostly TEM-1 [88].

OXA-10 and BlaA act as bridges where they connect two subunits in this cluster.

OXA-10 is connected to the first subunit with PNM edges and to the second subunit

with KCX edges. BlaA, on the other hand, is connected to the first subunit with PCZ

(Cefotaxime product, open form) ligand edges and to the second subunit with DRW

(Doripenem, open form) ligand edges.

Cluster 3 is formed by the third subgroup (S3) of Cluster 1 of the unweighted

identity network. It includes seven nodes: Three 6-aminohexanoate-dimer hydrolases,

Blab and Nmc-A from Class A β-lactamases, PBP 1a and CcrA from Class B β-

lactamases. MES and ACA (6-aminohexanoic acid) ligands connect this community.

Cluster 4 is the exact replicate of the Cluster 2 of the unweighted identity network,

which consists of seven proteins and contains only ACY ligand edges.

Cluster 5 consists of four proteins, three of which belong to the CTX-M family

and the fourth is DD carboxipeptidase DacC, which is also known as PBP 6. In the

article which defines PBP [89], it was stated that active site configuration and the

topography of its domain shows similarities to Ambler Class A. SUC (Sucrose) and

CB4 (Pinacol) ligands connect this cluster.

Cluster 6 is constructed by the addition of SHV-49 to Cluster 3 of the unweighted

identity network. Ligands, which connect this cluster, are EPE, MA4 (Cyclohexyl-
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Hexyl-Beta-D-Maltoside) and TBE (Tazobactam intermediate).

4.1.2.3. Similarity protein-ligand binding network. Our aim for constructing a weighted

similarity network is both to observe the contribution of ligand chemical similarity to

the existing protein interactions and to identify possible relationships between proteins,

even if they do not share any ligands, but bind to ligands that have high chemical sim-

ilarity. Two ligands are considered similar if their Tanimoto coefficient of chemical

similarity is above 0.7. To determine the strength of the relationship between two

nodes, we sum up the pairwise similarities of their ligands that pass the threshold.

The similarity network utilizes the assumption that ‘chemically similar ligands

should target same proteins’. Therefore, weight of the edges we observe between two

nodes (proteins) is the indicator of how much those nodes (proteins) are similar to

each other in terms of biological activity. As the weight of the edge among two nodes

increase, it is more likely that they are worth for further investigation.

The similarity network contains 100 nodes. Using ligand similarity enabled the

inclusion of β-lactamase BlaC (A5U493), which only binds to DWZ ((2S,3R,4S)-4-

[(3S,5S)-5-(dimethylcarbamoyl)pyrrolidin-3-yl]sulfanyl-2-[(1S,2R)-1-formyl-2-hydroxy–

propyl]-3-methyl-3,4-dihydro-2H-pyrrole-5-carboxylic acid), to the network. The high

similarity of DWZ with DRW and 2RG (Ertapenem) ligands, which are already in

the network, resulted in the addition of a new node to the network. The networkcon-

tains 1447 interactions, which is three times the number of interactions in the weighted

identity network. 69 proteins are placed in five clusters (Figure 4.5 and Table 4.3).

The use of similarity also leads to an increase in the number of proteins placed within

clusters in the similarity network.

Cluster 1 is the highest scoring cluster and 17 out of 34 proteins in this cluster

are PBPs and Group 2 Beta-lactamases. This community is formed by two subgroups,

where the first one contains mostly PBPs and Class A β-lactamases, as well as ampC,

OXA-10, Tll2115 and NDM-1. The relationships established within this subgroup are
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Figure 4.5. Communities in the similarity network. Cluster 1, Cluster 2, Cluster 3,

Cluster 4, and Cluster 5.
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Table 4.3. Communities in the Similarity Network.

Num Names

Cluster 1

Class A 11

SHV-1 (P0AD64), SED-1 (Q93PQ0), SFC-1 (Q6JP75),
GES-1 (Q9KJY7), GES-5 (Q09HD0), TEM (P62593),

blaA (P0C5C1), penP (P00808), CTX-M-9a (Q9L5C8),
blaZ (P00807), Toho-1 (Q47066)

Class B 1 NDM-1 (C7C422)

Class C 1 ampC (P00811)

Class D 3 OXA-10 (P14489), blaOXA-13 (Q51400), OXA-23 (Q9L4P2)

PBP 17

PBP2X (P14677), (2 ×) PBP1a (G1C794, Q04707),
PBP2” (Q93IC2), PBP4 (Q5HI26),

(2 ×) PBP3 (G3XD46, Q51504), PBP A (P71586),
(2 ×) DD carboxipeptidase (P39045, P15555),

DD carboxipeptidase DacA (P0AEB2),
(2 ×) DD carboxipeptidase DacB (P24228, P45161),

DD carboxipeptidase DacC (P08506), BlaR1 (P18357),
mecR1 (P0A0B0), Lmo2229 protein (Q8Y547)

Others 1 TII2115 protein (Q8DH45)

Cluster 2

Class A 2 TEM-72 (Q9R429), β-lactamase (P94458)

Class B 1 Metallo L1 (P52700)

Class D 7

OXA-1 (P13661), OXA-2 (P0A1V8), blaOXA-10 (Q7BNC2),
blaOXA-33 (Q8RLA6), blaOXA-45 (Q7WZC7),

OXA-46 (Q8GRH0), blaOXA-48 (Q6XEC0)

PBP 3
DD carboxipeptidase (Q6MHT0), BlaR1 (Q7WU28),

Peptidoglycan glycosyltransferase (C8W8H7)

Others 1 Transesterase (Q9Y7D1)

Cluster 3

Class A 2 blaB (P52664), nmc-A (Q7ATJ4)

Class B 1 β-lactamase II (P25910)

PBP 1 PBP1A (Q9RET4)

Others 3
(3 ×) 6-aminohexanoate-dimer hydrolase

(Q59710, P07061, P07062)

Cluster4

Class B 3
IMP-1 (P52699),

blaIMP-1 (Q79MP6), β-lactamase II (P04190)

Class C 1 CMY-10 (Q99QC1)

PBP 1 Peptidoglycan glycosyltransferase (C8WPP1)

Others 1 β-lactamase (D1C5R0)

Cluster 5

Class A 7

GES-2 (Q93F76), GES-5 (A0EL75), SHV-3 (P30896),
blaSHV-49 (Q5VCA8), bla-CTX-M-14 (Q9L5C7),

CTX-M-27 (Q840M4), β-lactamase (Q8EMP8)

PBP 1 PBP 2X (P59676)
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strong judging by the edge weights. Therefore, since these proteins share chemically

similar ligands, they may be expected to express similar biological activities. PBPs

in this subgroup do not reflect any classification scheme, since there are both high

MW and low MW PBPs included. The first subgroup is connected with thicker edges

when compared to the second and smaller subgroup. There are many different ligands

contribute to the first subgroup, but PNM is the most frequent one.

The second subgroup of Cluster 1 contains four PBPs and the rest is Group 2

β-lactamases. PBPs in this subgroup belong to high MW PBP class. The interaction

between SFC-1, blaOXA-13 and SED-1, where all three are connected to each other

with thick edges is conspicuous when compared to the other edges within this subgroup.

The edges within the second subgroup are mostly formed by interactions with two

ligands. The most frequent ligands in this subgroup are IM2 and MER (Meropenem,

bound form).

Cluster 2 is formed by two subgroups, where OXA-46 and blaOXA-33 act as

bridges with the highest betweenness centrality in this cluster. While one of the sub-

groups contains five OXA β-lactamases and BlaR1 (Q7WU28), the other subgroup

contains β-lactamases from Class B, Class A, PBP and a transesterase protein.

Both Cluster 1 and Cluster 2 contain BlaR1 proteins in which BlaR1 (P18357) in

Cluster 1 is grouped with PBPs and other proteins, while BlaR1 (Q7WU28) in Cluster

2 is grouped with OXA β-lactamases. The reason they are separated is that they bind

to different types of ligands.

Cluster 3 of the similarity network is the exact replica of Cluster 3 of the weighted

identity network and contains seven nodes.

Cluster 4 contains six nodes. It is similar to Cluster 4 of the weighted identity

network, except for the NDM-1 protein which is placed in Cluster 1 in the similarity

network. Apart from losing NDM-1, we capture a thicker edge between IMP-1 and

β-lactamase II this time due to their sharing of chemically similar ligands, which are
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OCS (Cysteinesulfonic acid) and CSW (Cysteine sulfinic acid).

Cluster 5. It is formed by eight nodes where the only protein which is not a Class

A β-lactamase is PBP2x. PBP2x is a member of high MW class B PBPs which are

sequentially close to Class A β-lactamases [14]. Cluster 5 is expanded from Cluster

6 of the weighted identity network with the addition of CTX-M-14, CTX-M-27 and

PBP2x.

4.1.2.4. Overall Discussion of the Network Models. Firstly, moving from the unweig-

hted identity network to the similarity network, we observed an enormous increase

not only in the number of connections established but also in the number of nodes

placed in the clusters. The inclusion of ligand similarity information in protein-ligand

interaction network has shown to provide useful clues on detecting densely connected

clusters. For example, we observe that the weighted identity network is a denser

version of the unweighted identity network, where a single cluster (Cluster 1) of the

unweighted identity network is divided into three clusters (Cluster 1, Cluster 2, and

Cluster 3) in the weighted identity network. With the similarity network, we were

able to capture strong relationships between protein pairs when ligand similarity is

considered compared to the two identity networks. Use of ligand similarity also led to

increase in the number of active ligands in the network which are also more β-lactamase

and PBP oriented ones.

Analysing the three network models reveals the evolution of a specific cluster when

it is expanded moving from the unweighted identity network towards the similarity

network (Figure 4.6a). Cluster 3 of the unweighted identity network, which is formed

by four Class A β-lactamases, is observed as Cluster 6 in the weighted identity network

with the addition of blaSHV-49. In the similarity network, CTX-M-27, CTX-M-14 and

PBP2x are included into this cluster. Out of five connections that bind these three

proteins to the Cluster 6 of the weighted identity network, four are made with the use

of ligand similarity information, namely similarity of SUC and MA4. We also observe

that one of the clusters is quite similar in the three network models (Figure 4.6b). In
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the unweighted identity and weighted identity networks, all of the edges are ACY. In

the similarity network, besides ACY we also observe OCS and CSW ligands. Except

for the loss of NDM-1 protein from this cluster in the similarity network, the core six

proteins remain together in all three models. Due to the use of ligand similarity, NDM-

1 establishes strong relationships with other proteins such as BlaC, OXA-10, and DD

carboxipeptidase DacB, which forced it to change its cluster. Grouping of NDM-1 with

other proteins when ligand similarity is used highlights the impact of ligand chemical

similarity.

Figure 4.6. Evolution of a cluster during the change of the network models. (a) The

cluster gains new nodes as the network model changes from the unweighted identity

to similarity. (b) The cluster loses NDM-1 in the similarity network model.

4.1.3. Protein pairs with high scores

Top scoring pairs describe the protein pairs with highest edge weights. Top

scoring pairs can be calculated only for the weighted identity and similarity networks,

where the edges are weighted. This feature enables the observation of pairs that have
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strong connections.

In the weighted identity network, there are 416 pairs, the highest score of which

is 6 and the lowest score is 1. This means that the highest scoring pair shares six

identical ligands, whereas the lowest scoring pair only shares a single identical ligand.

The average score is 1.15. We selected the value of 3 as a threshold for a protein pair

to be accepted as high scoring for the weighted identity network, since there are nearly

40 pairs with a score of 2. There are 10 pairs whose score is equal to or above 3 (Table

4.4). In the similarity network, 748 pairs are reported in which the highest score is

11.42 and the lowest score is 0.71. The average score is 1.7. We selected the pairs with

a score value higher than 7 (Table 4.5). When we compare the top-pairs in the models,

half of the top-scoring pairs in the weighted identity network consist of proteins from

the same classes such as SHV-3 – SHV-1, and OXA-1 – OXA-33. However, in the

similarity network there are only two pairs whose members are from the same class.

Table 4.4. Top pairs in the weighted identity network.

UniProt
acc. num. Name Class

UniProt
acc. num. Name Class Weight

P00811 ampC C Q9L5C8 CTX-M-9a A 6

P00811 ampC C Q47066 Toho-1 A 5

P62593 TEM A P00811 ampC C 4

P62593 TEM A G1C794 PBP 1a PBP 3

Q47066 Toho-1 A P15555 DD carbox. PBP 3

P62593 TEM A Q9L5C8 CTX-M-9a A 3

P30896 SHV-3 A P0AD64 SHV-1 A 3

P13661 OXA-1 D Q8RLA6 OXA-33 D 3

P0AD64 SHV-1 A Q5VCA8 blaSHV-49 A 3

P08506 PBP 6 PBP Q54113 PBP 2’ PBP 3

The first two pairs in both of the models are the same, namely ampC – CTX-

M-9a and ampC – Toho-1. It is not surprising that ampC took the lead in both

models, since it is one of the most studied β-lactamases. It is reported to have almost
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Table 4.5. Top pairs in the similarity network.

UniProt
acc. num. Name Class

UniProt
acc. num. Name Class Weight

P00811 ampC C Q9L5C8 CTX-M-9a A 11.42

P00811 ampC C Q47066 Toho-1 A 9.32

P0C5C1 β-lactamase blaA A C7C422 NDM-1 B 8.94

P00811 ampC C P0C5C1 β-lactamase blaA A 8.65

Q47066 Toho-1 A P0C5C1 β-lactamase blaA A 8.55

Q9L5C8 CTX-M-9a A P0C5C1 β-lactamase blaA A 7.96

P0C5C1 β-lactamase blaA A P15555 DD carbox. PBP 7.86

P14489 OXA-10 D P0C5C1 β-lactamase blaA A 7.57

Q9L5C8 CTX-M-9a A P08506 DacC (PBP6) PBP 7.57

Q9L5C8 CTX-M-9a A P24228 DacB (PBP4) PBP 7.41

P0C5C1 β-lactamase blaA A P24228 DacB (PBP4) PBP 7.27

P62593 TEM A P00811 ampC C 7.26

62000 bioactivities of which nearly 390 are known to have Ki and IC50 values in

ChEMBL (ChEMBL2026)2 . Furthermore, CTXM-9a is also one of the best binders

with high ligand count. For ampC and Toho-1, apart from their sharing of five common

ligands, we can infer that the other ligands they bind to are chemically similar. Toho-

1 is a CTX-M type Group 2 β-lactamase and 7 ligands are reported in ChEMBL

(ChEMBL16976753) [23].

The other pairs in the Tables 4.4 and 4.5 are different from each other. Use

of similarity highlighted interactions with β-lactamase BlaA and more PBPs in the

similarity network model. β-lactamase BlaA, also known as BlaC, is encoded by My-

cobacterium tuberculosis which is a dangerous pathogen that causes tuberculosis, and

kills 1.3 million people every year according to the report of WHO in 2013 [90]. BlaC

is a Class A and Group 2 β-lactamase and reported to interact with 20 ligands in PDB.

It connects to 18 different proteins via 8 ligands in the weighted identity network in

PDB. In the similarity network, it is observed that BlaC interacts with 37 proteins

via 16 ligands. BlaC shares similar ligands with NDM-1, ampC, Toho-1, CTX-M-9a

2The IDs start with ‘ChEMBL’ denotes ChEMBL identifiers.
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and DD carboxipeptidase. A recent study showed that BlaC is irreversibly inhibited

by NXL104 (Avibactam), a β-lactamase inhibitor, and clavulanic acid [91]. Therefore,

considering the strong relationships between BlaC and the proteins listed above, we

suggest that these proteins might also interact with NXL104. A previous study that

reported the inhibition of Class A (CTX-M-15: Q9EXV5) and Class C (ampC: P24735)

β-lactamases by NXL104 [92] also strengthens our suggestion.

OXA-10 and BlaC pairing is another interesting relationship identified through

the similarity network, although they are not reported to share an identical ligand in

PDB, the similarity of their ligands is 7.57, which is considerably high. OXA-10 is

a Class D β-lactamase and belongs to Group 2. OXA-10 was reported to connect to

meropenem while meropenem-clavulanate was found effective against BlaC in another

study [93–95]. These interactions were not listed in PDB; however with the help of our

similarity model we were able to capture them.

We also observe that CTX-M-9a seems more similar to Penicillin-binding pro-

teins than it is to TEM when ligand similarity is taken into account. From the top-

pairs list we observe that CTX-M-9a shares ligands with PBP4 (P24228) and PBP6

(P08506). Considering CTX-M-9a as a bridge, we can observe a relationship between

PBP6 and PBP4, which are actually reported in PDB to have one common ligand,

AIC (Ampicillin). They also have a similarity score of 4.34 which means they bind to

some other chemically similar ligands, namely PNV–AIC, PNM–AIC, PNM–AIX and

AIX–AIC (PNV: Penicillin V, PNM: Penicillin G, AIX: Ampicillin, open form). Fur-

ther research in DrugBank revealed that they both bind to Ertapenem (DB00303) [96]

which strengthens the relationship between PBP4 and PBP6. PBP6 is reported to

bind to AIX, whereas no interaction for PBP4–AIX is defined. Thus, we suggest that

PBP4 might also bind to AIX, where AIX was already reported to bind other PBP4s

(Q8Y547, A8E0K8) [97, 98]. Similarly, PBP4 is reported to bind PNV and PNM,

whereas no interactions involving these ligands are reported for PBP6. Therefore, we

also suggest that the PNV and PNM binding to PBP6 can be investigated.

Another interesting point is that SHV-1 is also no longer in the top list of the
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similarity network, even though it is the second best binder with the number of 26

ligand interactions. Instead, NDM-1, which is a Class B β-lactamase and a global

threat [99, 100], makes its way to the top list with BlaA (BlaC) pairing where the

interaction is completely built on ligand similarities. Although NDM-1 has half of the

ligand interactions SHV-1 has, our similarity model highlights its relationship with

BlaC. This is a nice indicator of the importance of ligand similarity over considering

only ligand sharing information as we did in the weighted identity network.

We provide the pair scoring tables for top 100 pairs of the weighted identity and

similarity models in the Appendix.

4.2. Comparative study of SMILES-based ligand kernels for protein-ligand

interaction prediction

In this section, results of the SVM classification which is presented in Section

3.2.4 for different ligand similarity kernels on the GPCR and ion channels data sets are

presented. In the first protocol, for each target protein, the data points regarding the

remaining proteins and a small portion of the current protein’s data points are trained

in the SVM classifier and the rest of the data points of the target protein are used for

testing. As a target kernel, the hierarchy kernel is used. This original setup does not

change except for the ligand similarity kernels.

All of the 16 different ligand kernels we present here utilize the SMILES string

descriptors of the compounds. Among these kernels, the string similarity ones; edit

distance, NLCS, combination of NLCS algorithms (CLCS) as well as the SMILES-

specialized ones; LINGOsim, SMIfp and SMILES based substring kernels are tested.

The original LINGOsim algorithm uses substring length q = 4 to create LINGOs from

the SMILES string and then, applies Tanimoto similarity coefficient to measure the

similarity between two LINGO sets. In this study, we perform LINGOsim on the

compounds based on the substring (LINGO) lengths q = 3, 4, 5. We also propose a

weighted LINGOsim model where we assign weights to each LINGO. SMIfp is another

SMILES oriented compound similarity algorithm which converts SMILES strings into
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34D scalar fingerprints where each dimension holds the frequency of a pre-determined

symbol in that SMILES. SMIfp is designed for the virtual screening task and CBD is

used to extract similar compounds. In this study not only we tested SMIfp with CBD,

but we also apply two other metrics, Euclid Distance and Tanimoto coefficient. We

also modify SMIfp in a way such that we can expand the dimensions of the fingerprint

with the symbols frequent in our compound data set. Therefore, we propose a 38D

SMIfp method which is also tested with Euclid distance, CBD, and Tanimoto similarity

coefficient. SMILES based substring kernel is tested with both original and modified

SMILES strings. Finally, we propose a novel similarity kernel which we call LINGO-

based TF-IDF cosine similarity. It threats each SMILES string as a document and

each LINGO in the SMILES as a term.

We set the original experiment results for the hierarchy kernel with 2D fingerprint

ligand similarity as baseline. The classifier results are given as area under the ROC

curve (AUC). A ROC curve depicts the performance of a classifier in a two-dimensional

space where these dimensions represent True-Positive and False-Positive rates. Calcu-

lating the area under ROC reduces the dimension to a scalar value which represents

the success of the classifier [101]. Table 4.6 depicts the AUC results for each protein

family. We should report that the AUC results for the 2D fingerprint Tanimoto kernel

are given as 0.926 ± 0.015 for GPCR and 0.925 ± 0.012 for ion channels [3]. The

comparisons made here are based on our AUC results with 2D fingerprint Tanimoto

kernel. Inconsistency of the data points which are provided online with the ones re-

ported in [3] (explained in Section 3.2.1) might be the reason of the difference between

the AUC scores.

For the GPCR data set, LINGO-based TF-IDF cosine similarity produced the

best score by outperforming the original ligand kernel with a slight difference. SMILES-

based substring with modified SMILES input (Modified Substring) and NCLS kernels

produced the second and third best AUCs. We observed that the similarity distance

CBD selected by the original SMIfp algorithm was not a good choice, but Tanimoto

similarity coefficient improved the results in both of the SMIfp models with 34D and

38D. Unfortunately, increasing fingerprint dimension from 34D to 38D in SMIfp did
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Table 4.6. AUC for the ligand kernels on GPCR and ion channels data sets.

Kernel Type GPCR ion channels

2D fingerprint Tanimoto 0.810 ± 0.026 0.862 ± 0.015

Edit distance 0.767 ± 0.028 0.713 ± 0.016

Substring 0.771 ± 0.027 0.827 ± 0.017

Modified substring 0.790 ± 0.027 0.826 ± 0.016

LINGOsim (q=3) 0.690 ± 0.027 0.712 ± 0.016

LINGOsim (q=4) 0.715 ± 0.027 0.732 ± 0.017

LINGOsim (q=5) 0.768 ± 0.022 0.748 ± 0.017

LINGOsim weighted 0.626 ± 0.026 0.599 ± 0.021

SMIfp 34D Euclid 0.714 ± 0.028 0.809 ± 0.017

SMIfp 34D CBD 0.715 ± 0.027 0.810 ± 0.017

SMIfp 34D Tanimoto 0.773 ± 0.029 0.820 ± 0.016

SMIfp 38D Euclid 0.707 ± 0.029 0.796 ± 0.018

SMIfp 38D CBD 0.696 ± 0.029 0.796 ± 0.018

SMIfp 38D Tanimoto 0.782 ± 0.028 0.821 ± 0.017

NLCS 0.784 ± 0.029 0.853 ± 0.014

CLCS 0.766 ± 0.028 0.852 ± 0.015

LINGO based TF-IDF 0.819 ± 0.024 0.845 ± 0.014

not enhance the results significantly as it was expected. However, when Tanimoto co-

efficient was applied, 38D SMIfp performed better than 34D SMIfp. When we compare

LINGOsim kernels with different subsequence length q, selecting q = 5 significantly im-

proved the AUC. Weighted LINGOsim model produced the worst performance among

all ligand kernels. The reason behind this fail could be that assigning term frequencies

to LINGOs was not appropriate.

For ion data set, none of the ligand kernels outperformed the original kernel;

however NLCS, CLCS and LINGO-based TF-IDF kernel produced the relatively closest

scores. We again observed that using Tanimoto similarity coefficient enhanced the

results in both of the SMIfp models. When we compared LINGOSim kernels, we saw
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that increasing the substring length also improved the AUC. The weighted LINGOsim,

however, produced the worst result.

For both data sets, CLCS failed to achieve better performance than NLCS even

though it was a more complex model. CLCS combines three different algorithms that

utilize LCS structure and assigns weight to each algorithm. Increasing the weight of

the LCS component might improve performance of CLCS.

Our results showed that SMILES string can be used to measure the similarity of

the compounds without requiring any other descriptor. Furthermore, when applied an

efficient similarity method, SMILES based kernels obtained promising results (LINGO-

based TF-IDF cosine similarity).
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5. CONCLUSION

5.1. Conclusions

With this work we have examined protein-ligand interactions through the lens

of ligand similarity using both network models and machine learning. First, we in-

troduced a method for clustering proteins using a ligand-centric network model where

proteins were represented as nodes and the ligands they share were used to create edges

to connect them. We proposed three network models; unweighted identity, weighted

identity and similarity. The unweighted identity and weighted identity networks con-

nected only proteins that share identical ligands, whereas in the similarity network,

chemical similarity of the ligands was also considered. By constructing different net-

work models, we had the opportunity to observe how the clusters are affected when

the networks include ligand information on: (i) number of identical ligands, and (ii)

chemical similarity of the ligands.

We apply our method on β-lactamase and Penicillin-Binding-Protein family of

proteins. These β-lactam binding proteins were selected because there is enormous

evolutionary pressure on them as novel β-lactam type drugs are developed to combat

antimicrobial resistance. With the use of chemical similarity not only denser clusters

were observed, but also some clusters were expanded. We have shown that new scientific

hypotheses, which deserve further investigations, can be generated by analysing the top

scoring pairs in the weighted identity and similarity networks. For example, chemical

similarity use highlighted some relationships which might seem insignificant otherwise

such as relationships of β-lactamase BlaA (BlaC) with NDM-1, ampC, Toho-1, CTX-

M-9a, DD carboxipeptidase and OXA-10. Considering the knowledge of inhibition of

BlaC by Avibactam (NXL104) inhibitor, we suggested the use of NXL104 inhibitor for

these listed proteins. We also observed a relationship between PBP4 and PBP6, and

suggested ampicillin, might bind to PBP4 and penicillin V and penicillin G might bind

to PBP6 with high affinity.
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In ligand based clustering functionally similar proteins tended to group together,

where in most cases Group 2 proteins and PBPs were placed within the same cluster.

Ligand based clustering was also consistent with sequential similarities. For example,

BlaR1 was clustered together with Class D β-lactamases. BlaR1 protein is a high MW

class C PBP. This class of proteins are reported to be sequentially similar to Class D

β-lactamases [14].

Second, we presented a comparative study of ligand similarity kernels on the

task of protein-ligand interaction prediction using SVM. We chose 2D fingerprint Tan-

imoto similarity kernel as base kernel and utilized 16 different ligand similarity kernels,

LINGO with different parameter settings (substring length q = 3, 4, 5, weighted model),

SMIfp with different distance metrics (Euclid, CBD, Tanimoto), SMILES based sub-

string kernel and its modified version, LINGO-based TF-IDF cosine similarity, edit

distance, Normalized Longest Common Subsequence, combination of LCS algorithms

all of which are based on SMILES string. Among these kernels, SMIfp, LINGOsim and

SMILES-based substring models are SMILES similarity targeting kernels while the rest

of them are string kernels.

The original SMIfp algorithm is based on representing SMILES string on 34D

vector where each dimension reflects the frequency of a pre-determined symbol in that

SMILES. Then two vectors are compared using CBD. In our study, we tested 34D

SMIfp model using Euclid and Tanimoto similarity coefficient along with CBD. We

observed that when compared with CBD using Tanimoto coefficient significantly im-

proves the AUC results, although it failed to outperform the base kernel. We then

utilize LINGOsim kernel whose substring length q was set as 4 by definition. We held

our experiments for q = 3, 4, 5 using LINGOsim. AUC results showed that selecting q

as 5 will be wiser decision. Comparison of CLCS with NLCS showed that, even though

CLCS combined three different LCS approaches it failed to improve the LCS model.

The method we propose by combining the original LINGO representation (q = 4)

with TF-IDF cosine similarity outperformed the base kernel on the GPCR data set,

although it failed on the ion channels data set.
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Our study proved that efficient selection of the ligand kernel directly affects the

success of the classification algorithm in the task of target-ligand prediction. We also

observed that SMILES string is adequate when used with the suitable similarity kernel,

such as LINGO-based TF-IDF.

5.2. Future Studies

The proposed network models are applicable for all protein families interacting

with small compounds. We presented β-lactamase and PBP families as a case study.

The available data for these families in the PDB is limited, but even in this condition our

method obtained promising results. When applied to a richer data set of interactions,

we believe that more interesting results may be produced. We first aim to curate

publicly available interaction data from databases such as ChEMBL and BindingDB.

Then with the help of text mining and protein-ligand interaction methods we will focus

expanding this data set.

The method we propose named LINGO-based TF-IDF cosine similarity produced

promising results on the GPCR data set. In addition, setting substring length q = 5

improved the results of LINGOsim when compared with q = 3, 4. Therefore, modifying

LINGOs as substring length q=5 in the TF-IDF model can give better results.
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APPENDIX A: PAIR SCORE TABLES

Table A.1. Top 100 pairs of the weighted identity network according to the scores.

no Protein ID Ligand ID Protein ID Score

1 P00811 CB4,SM2,SUC,DMS,GF4,GF1 Q9L5C8 6

2 P00811 BZB,CAZ,CLS,CEO,PCZ Q47066 5

3 P62593 IM2,CB4,105,SM2 P00811 4

4 P62593 MES,IM2,PNM G1C794 3

5 Q47066 PNM,CEF,CEP P15555 3

6 P62593 CB4,SM2,NBF Q9L5C8 3

7 P30896 EPE,MPD,MA4 P0AD64 3

8 P13661 KCX,DRW,1S6 Q8RLA6 3

9 P0AD64 MA4,TBE,TSL Q5VCA8 3

10 P08506 DAL,AMV,FGA Q54113 3

11 P62593 MES,IM2 P39045 2

12 P39045 MES,IM2 G1C794 2

13 P07062 MES,ACA P07061 2

14 P07062 MES,ACA Q59710 2

15 P07061 MES,ACA Q59710 2

16 P62593 FOS,PNM P00807 2

17 P62593 IM2,PNM P71586 2

18 P62593 IM2,EPE P18357 2

19 P00811 IM2,BSF P39045 2

20 P00811 IM2,PCZ P71586 2

21 P00811 IM2,CAZ P18357 2

22 P00811 IM2,CAZ Q51504 2

23 Q51400 IM2,MER Q93PQ0 2

24 Q51400 IM2,MER P18357 2

25 Q93PQ0 IM2,MER P18357 2

26 P71586 IM2,PNM G1C794 2

27 P18357 IM2,CAZ Q51504 2

28 Q51504 IM2,AZR G1C794 2

29 P00807 PNM,CED P00808 2

30 P00808 PNM,PCZ Q47066 2
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Table A.1. Top 100 pairs of the weighted identity network according to the scores

(cont.).

no Protein ID Ligand ID Protein ID Score

31 P00808 PNM,PCZ P71586 2

32 Q47066 PNM,PCZ P71586 2

33 Q47066 PNM,AZR G1C794 2

34 P62593 CB4,EPE P0AD64 2

35 P00811 CB4,SUC Q9L5C7 2

36 Q9L5C8 CB4,SUC Q9L5C7 2

37 P0AD64 EPE,MER P18357 2

38 P0AD64 EPE,TBE Q93F76 2

39 Q47066 CAZ,AZR Q51504 2

40 P00811 AXL,PCZ P0C5C1 2

41 P00811 KCX,DMS P14489 2

42 P00811 KCX,PEG Q9L4P2 2

43 P14489 KCX,PG4 Q8RLA6 2

44 P00811 APB,0NG Q8FGC8 2

45 Q59401 WY4,WY2 P0AD64 2

46 P00808 EOH,PGE P94458 2

47 Q93PQ0 SFR,FPM C7C422 2

48 P0C5C1 AIX,CB9 Q8Y547 2

49 P14677 BMG,TEB Q04707 2

50 P25910 MES P62593 1

51 P25910 MES Q7ATJ4 1

52 P25910 MES P52664 1

53 P25910 MES P39045 1

54 P25910 MES Q9RET4 1

55 P25910 MES G1C794 1

56 P25910 MES P07062 1

57 P25910 MES P07061 1

58 P25910 MES Q59710 1

59 P62593 MES Q7ATJ4 1

60 P62593 MES P52664 1

61 P62593 MES Q9RET4 1

62 P62593 MES P07062 1

63 P62593 MES P07061 1

64 P62593 MES Q59710 1

65 Q7ATJ4 MES P52664 1

66 Q7ATJ4 MES P39045 1

67 Q7ATJ4 MES Q9RET4 1

68 Q7ATJ4 MES G1C794 1

69 Q7ATJ4 MES P07062 1

70 Q7ATJ4 MES P07061 1
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Table A.1. Top 100 pairs of the weighted identity network according to the scores

(cont.).

no Protein ID iıgand ID Protein ID Score

71 Q7ATJ4 MES Q59710 1

72 P52664 MES P39045 1

73 P52664 MES Q9RET4 1

74 P52664 MES G1C794 1

75 P52664 MES P07062 1

76 P52664 MES P07061 1

77 P52664 MES Q59710 1

78 P39045 MES Q9RET4 1

79 P39045 MES P07062 1

80 P39045 MES P07061 1

81 P39045 MES Q59710 1

82 Q9RET4 MES G1C794 1

83 Q9RET4 MES P07062 1

84 Q9RET4 MES P07061 1

85 Q9RET4 MES Q59710 1

86 G1C794 MES P07062 1

87 G1C794 MES P07061 1

88 G1C794 MES Q59710 1

89 P62593 IM2 Q51400 1

90 P62593 IM2 P0AEB2 1

91 P62593 IM2 Q93PQ0 1

92 P62593 IM2 Q51504 1

93 P62593 IM2 Q9KJY7 1

94 P62593 IM2 Q09HD0 1

95 P00811 IM2 Q51400 1

96 P00811 IM2 P0AEB2 1

97 P00811 IM2 Q93PQ0 1

98 P00811 IM2 G1C794 1

99 P00811 IM2 Q9KJY7 1

100 P00811 IM2 Q09HD0 1
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Table A.2. Top 100 pairs of the similarity network according to the scores.

no Protein ID Ligand ID Protein ID Score

1 P00811

CB4-CB4,CLS-CFX,CLS-CE3,SUC-SUC,AXL-PNN,
AXL-PNK, AXL-YPP, SM2-SM2,SM3-SM2,
DMS-DMS,SM4-SM2, GF4-GF4,GF1-GF1 Q9L5C8 11,42

2 P00811
BZB-BZB,CAZ-PCZ,CAZ-CAZ,CLS-CLS,KCP-CEP,KCP-CLS,

CEO-CEO,AXL-PNM,PCZ-PCZ,PCZ-CAZ Q47066 9,32

3 P0C5C1
AXL-ZZ7,AXL-PNK,AIX-ZZ7,AIX-PNK,CB9-ZZ7,

CB9-PNK,NFF-0RM,7EP-0RM,SFR-FPM,SFR-SFR C7C422 8,94

4 P00811
CAZ-PCZ,CLS-9EP,KCP-9EP,CEO-CD6,AXL-AXL,
AXL-AIX,AXL-CB9,AXL-7EP,MXG-CD6,PCZ-PCZ P0C5C1 8,65

5 Q47066
CEP-9EP,PNM-XD1,PNM-AXL,PNM-AIX,

PNM-CB9,PNM-7EP,CEO-CD6,CLS-9EP,PCZ-PCZ,CAZ-PCZ P0C5C1 8,55

6 Q9L5C8
PNN-AXL,PNN-AIX,PNN-CB9,PNK-AXL,PNK-AIX,
PNK-CB9,WPP-AIX,YPP-AXL,YPP-AIX,YPP-CB9 P0C5C1 7,96

7 P0C5C1
XD1-PNM,XD1-HE0,AXL-PNM,AXL-HE0,AIX-PNM,

AIX-HE0,CB9-PNM,CB9-HE0,9EP-CEP,7EP-PNM P15555 7,86

8 P14489
HOQ-XD1,PNM-XD1,PNM-AXL,PNM-AIX,PNM-CB9,

PNM-7EP,ZZ7-AXL,ZZ7-AIX,ZZ7-CB9 P0C5C1 7,57

9 Q9L5C8
SUC-SUC,PNN-AIX,PNN-AIC,PNK-AIX,PNK-AIC,

WPP-AIX,WPP-AIC,YPP-AIX,YPP-AIC P08506 7,57

10 Q9L5C8
PNN-AIC,PNN-PNM,PNN-PNV,PNK-AIC,

PNK-PNM,WPP-AIC,YPP-AIC,YPP-PNM,CE3-FXM P24228 7,41

11 P0C5C1
XD1-PNM,AXL-AIC,AXL-PNM,AIX-AIC,

AIX-PNM,CB9-AIC,CB9-PNM,7EP-PNM,SFR-FPM P24228 7,27

12 P62593
IM2-IM2,PNM-AXL,CB4-CB4,105-105,

SM2-SM2,SM2-SM3,SM2-SM4,CXB-CB4 P00811 7,26

13 P14489
PNM-PNN,PNM-PNK, PNM-YPP, ZZ7-PNN,

ZZ7-PNK,ZZ7-WPP,ZZ7-YPP,DMS-DMS Q9L5C8 6,79

14 P0AD64
LN1-MXC,LN1-MXF,17K-MXS,17K-MXC,

17K-MXF,MXF-MXS,MXF-MXC,MXF-MXF Q8RLA6 6,58

15 Q9L5C8
PNN-ZZ7,PNN-PNK,PNK-ZZ7,PNK-0RM,
PNK-PNK,WPP-ZZ7,YPP-ZZ7,YPP-PNK C7C422 6,58

16 P0C5C1
AXL-CMV,AXL-FMZ,AXL-AIX,AIX-CMV,

AIX-FMZ,AIX-AIX,CB9-AIX,7EP-AIX P45161 6,51

17 P62593
PNM-PNN,PNM-PNK,PNM-YPP,

CB4-CB4,SM2-SM2,NBF-NBF,CXB-CB4 Q9L5C8 6,36

18 P14489
PNM-ZZ7,PNM-PNK,ZZ7-ZZ7,ZZ7-0RM,

ZZ7-PNK,PG4-P6G,PG4-PEG C7C422 6,27

19 P0C5C1
AXL-AIX,AXL-CB9,AIX-AIX,AIX-CB9,

CB9-AIX,CB9-CB9,7EP-AIX Q8Y547 6,18

20 Q9L5C8
PNN-AIX,PNK-CMV,PNK-FMZ,PNK-AIX,
WPP-AIX,YPP-CMV,YPP-FMZ,YPP-AIX P45161 6,09

21 P00811
CAZ-PCZ,CLS-CFX,CLS-CED,

KCP-CED,AXL-PNM,PEG-PGE,PCZ-PCZ P00808 6,06

22 P00808
PNM-XD1,PNM-AXL,PNM-AIX,

PNM-CB9,PNM-7EP,PCZ-PCZ,CED-9EP P0C5C1 6,01

23 P0C5C1
AXL-AIX,AXL-AIC,AIX-AIX,

AIX-AIC,CB9-AIX,CB9-AIC,7EP-AIX P08506 5,84

24 Q9L5C8
PNN-HEL,PNN-PNM,PNK-PNM,PNK-HE0,

WPP-HEL,YPP-PNM,CE3-CEF P15555 5,69

25 P39045
EWB-E08,EWB-E07,EWA-A01,

BH6-ZA2,ZA3-ZA3,B07-A01 Q7CRA4 5,64

26 P0C5C1
AXL-PG1,AXL-7EP,AIX-PG1,AIX-7EP,

CB9-PG1,NFF-7EP,7EP-7EP Q93IC2 5,61

27 Q9L5C8
PNN-AIX,PNN-CB9,PNK-AIX,

PNK-CB9,WPP-AIX,YPP-AIX,YPP-CB9 Q8Y547 5,60
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Table A.2. Top 100 pairs of the similarity network according to the scores (cont.).

no Protein ID Ligand ID Protein ID Score

28 P00811 MOX-MX1,AXL-PNM,AXL-ZZ7,KCX-KCX,DMS-DMS,PEG-PG4 P14489 5,50

29 P00808 CFX-CLS,PNM-PNM,PCZ-PCZ,PCZ-CAZ,CED-CEP,CED-CLS Q47066 5,34

30 Q47066 CEF-CTJ,PNM-CB9,PCZ-CAZ,AZR-AZR,AZR-PFV,CAZ-CAZ Q51504 5,30

31 C7C422 ZZ7-AIC,ZZ7-PNM,PNK-AIC,PNK-PNM,FPM-FPM,SFR-FPM P24228 5,23

32 P00811 CEO-NCF,CEO-REC,IM2-IM2,MXG-REC,BSF-BSF,BSG-BSF P39045 5,22

33 P62593 IM2-MER,CB4-CB4,CB4-CZ6,CXB-CB4,CXB-CZ6,EPE-EPE P0AD64 5,18

34 P0C5C1 XD1-PNM,AXL-PNM,AIX-PNM,CB9-PNM,7EP-PNM,PCZ-PCZ P71586 5,15

35 P00807 CED-9EP,PNM-XD1,PNM-AXL,PNM-AIX,PNM-CB9,PNM-7EP P0C5C1 5,01

36 Q47066 CEF-CE3,PNM-PNN,PNM-PNK,PNM-YPP,CLS-CFX,CLS-CE3 Q9L5C8 4,94

37 P62593 PNM-XD1,PNM-AXL,PNM-AIX,PNM-CB9,PNM-7EP,ALP-XD1 P0C5C1 4,93

38 P14489 PNM-CMV,PNM-FMZ,PNM-AIX,ZZ7-CMV,ZZ7-FMZ,ZZ7-AIX P45161 4,88

39 C7C422 ZZ7-CMV,ZZ7-FMZ,ZZ7-AIX,PNK-CMV,PNK-FMZ,PNK-AIX P45161 4,82

40 P0AD64 MA4-MA4,TBI-TBE,TBE-TBE,TSL-TSL,TAU-ESA Q5VCA8 4,73

41 Q47066 CEF-CEF,CEP-CEP,PNM-PNM,PNM-HE0,CLS-CSC P15555 4,59

42 P00811 CAZ-CAZ,IM2-IM2,IM2-MER,AXL-PG1,PCZ-CAZ P18357 4,42

43 P00811 CXU-0WO,AXL-ZZ7,AXL-PNK,PEG-P6G,PEG-PEG C7C422 4,38

44 P24228 AIC-AIX,AIC-AIC,PNM-AIX,PNM-AIC,PNV-AIC P08506 4,33

45 P00811 CXU-CXV,CLS-CFX,KCP-HJ2,IM2-IM2,AXL-HJ3 P0AEB2 4,30

46 P15555 DAL-DAL,HEL-AIC,PNM-AIX,PNM-AIC,HE0-AIX P08506 4,27

47 P15555 HEL-AIC,HEL-PNV,PNM-AIC,PNM-PNM,HE0-PNM P24228 4,16

48 P0C5C1 XD1-PNM,AXL-PNM,AIX-PNM,CB9-PNM,7EP-PNM Q8DH45 4,15

49 P0C5C1 XD1-PNM,AXL-PNM,AIX-PNM,CB9-PNM,7EP-PNM G1C794 4,15

50 P45161 CMV-AIX,CMV-AIC,FMZ-AIX,AIX-AIX,AIX-AIC P08506 4,09

51 P0C5C1 1RG-MER,AXL-PG1,AIX-PG1,CB9-PG1,PCZ-CAZ P18357 4,06

52 P30896 EPE-EPE,MA4-MA4,MPD-MPD,MPD-MRD P0AD64 4,00

53 P24228 AIC-CMV,AIC-AIX,PNM-CMV,PNM-FMZ,PNM-AIX P45161 3,95

54 P00811 CAZ-PCZ,IM2-IM2,AXL-PNM,PCZ-PCZ P71586 3,81

55 P00811 CAZ-CAZ,IM2-IM2,AXL-CB9,PCZ-CAZ Q51504 3,75

56 P08506 AMV-MUR,AMV-AMV,DAL-DAL,FGA-FGA Q54113 3,72

57 P14489 PNM-AIX,PNM-CB9,ZZ7-AIX,ZZ7-CB9 Q8Y547 3,66

58 C7C422 ZZ7-AIX,ZZ7-CB9,PNK-AIX,PNK-CB9 Q8Y547 3,63

59 P00808 PGE-P6G,PGE-PEG,PNM-ZZ7,PNM-PNK C7C422 3,61

60 P0C5C1 AXL-CB9,AIX-CB9,CB9-CB9,PCZ-CAZ Q51504 3,61

61 Q51504 CB9-PNM,IM2-IM2,AZR-AZR,PFV-AZR G1C794 3,60

62 Q93PQ0 SFR-FPM,SFR-SFR,FPM-FPM,FPM-SFR C7C422 3,57

63 P62593 IM2-IM2,IM2-MER,PNM-PG1,EPE-EPE P18357 3,56

64 P18357 PG1-CB9,CAZ-CAZ,IM2-IM2,MER-IM2 Q51504 3,53

65 P00808 CFX-CFX,PNM-PNN,PNM-PNK,PNM-YPP Q9L5C8 3,52
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Table A.2. Top 100 pairs of the similarity network according to the scores (cont.).

no Protein ID Ligand ID Protein ID Score

66 P14489 PNM-AIC,PNM-PNM,ZZ7-AIC,ZZ7-PNM P24228 3,51

67 P14489 PNM-AIX,PNM-AIC,ZZ7-AIX,ZZ7-AIC P08506 3,50

68 Q51400 IM2-IM2,IM2-MER,MER-IM2,MER-MER Q93PQ0 3,49

69 Q51400 IM2-IM2,IM2-MER,MER-IM2,MER-MER P18357 3,49

70 Q93PQ0 IM2-IM2,IM2-MER,MER-IM2,MER-MER P18357 3,49

71 P71586 IM2-IM2,IM2-MER,PNM-PG1,PCZ-CAZ P18357 3,49

72 C7C422 ZZ7-AIX,ZZ7-AIC,PNK-AIX,PNK-AIC P08506 3,45

73 P14489 PNM-PNM,PNM-HE0,ZZ7-PNM,ZZ7-HE0 P15555 3,42

74 P08506 AIX-AIX,AIX-CB9,AIC-AIX,AIC-CB9 Q8Y547 3,42

75 P00811 CB4-CB4,CB4-CZ6,SUC-MA4,IM2-MER P0AD64 3,40

76 P24228 AIC-AIX,AIC-CB9,PNM-AIX,PNM-CB9 Q8Y547 3,40

77 P45161 CMV-AIX,FMZ-AIX,AIX-AIX,AIX-CB9 Q8Y547 3,40

78 C7C422 ZZ7-PNM,ZZ7-HE0,PNK-PNM,PNK-HE0 P15555 3,36

79 P15555 PNM-AIX,PNM-CB9,HE0-AIX,HE0-CB9 Q8Y547 3,29

80 Q9L5C8 PNN-ZZ7,PNK-ZZ7,WPP-ZZ7,YPP-ZZ7 Q5HI26 3,28

81 P00811 CLS-CSC,KCP-CEP,AXL-PNM,AXL-HE0 P15555 3,23

82 P15555 PNM-CMV,PNM-FMZ,PNM-AIX,HE0-AIX P45161 3,15

83 Q9L5C8 PNN-CB9,PNK-CB9,YPP-CB9,CE3-CTJ Q51504 3,11

84 P62593 IM2-IM2,PNM-PNM,MES-MES G1C794 3,00

85 P13661 KCX-KCX,DRW-DRW,1S6-1S6 Q8RLA6 3,00

86 P0AD64 TBI-TBE,TBE-TBE,EPE-EPE Q93F76 3,00

87 P0AEB2 HJ3-XD1,HJ3-AXL,HJ3-AIX,HJ3-CB9 P0C5C1 2,96

88 Q47066 PNM-PNM,PCZ-PCZ,CAZ-PCZ P71586 2,93

89 P14489 PNM-PNM,ZZ7-PNM,PG4-PGE P00808 2,90

90 P71586 IM2-IM2,PNM-CB9,PCZ-CAZ Q51504 2,83

91 P62593 PNM-PNM,PNM-ZZ7,ALP-HOQ P14489 2,79

92 Q47066 PNM-PG1,PCZ-CAZ,CAZ-CAZ P18357 2,75

93 P52700 MCO-X8Z,PEG-P6G,PEG-PEG C7C422 2,75

94 C7C422 P6G-PG4,PEG-PG4,FMT-FMT Q9Y7D1 2,75

95 P62593 IM2-IM2,NBF-B07,MES-MES P39045 2,74

96 P00811 IM2-MER,KCX-KCX,PEG-PEG Q9L4P2 2,74

97 P0AD64 EPE-EPE,MER-IM2,MER-MER P18357 2,74

98 Q8RLA6 PG4-P6G,PG4-PEG,1S6-0WO C7C422 2,72

99 P00811 SUC-SUC,AXL-AIX,AXL-AIC P08506 2,71

100 P0C5C1 AXL-ZZ7,AIX-ZZ7,CB9-ZZ7 Q5HI26 2,71
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